Publications by authors named "Mugdha Bhati"

LIM-Homeodomain (LIM-HD) transcription factors are highly conserved in animals where they are thought to act in a transcriptional 'LIM code' that specifies cell types, particularly in the central nervous system. In chick and mammals the interaction between two LIM-HD proteins, LHX3 and Islet1 (ISL1), is essential for the development of motor neurons. Using yeast two-hybrid analysis we showed that the Caenorhabditis elegans orthologs of LHX3 and ISL1, CEH-14 and LIM-7 can physically interact.

View Article and Find Full Text PDF

CD1 proteins present microbial lipids to T cells. Germline-encoded mycolyl lipid-reactive (GEM) T cells with conserved αβ T cell receptors (TCRs) recognize CD1b presenting mycobacterial mycolates. As the molecular basis underpinning TCR recognition of CD1b remains unknown, here we determine the structure of a GEM TCR bound to CD1b presenting glucose-6-O-monomycolate (GMM).

View Article and Find Full Text PDF

Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells.

View Article and Find Full Text PDF

The T-cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T-lymphocytes, with each chain of the TCR comprising three complementarity-determining regions (CDRs) that collectively form the antigen-binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR-pMHC interaction is crucially important in cell-mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo.

View Article and Find Full Text PDF

Human CD1a mediates foreign Ag recognition by a T cell clone, but the nature of possible TCR interactions with CD1a/lipid are unknown. After incubating CD1a with a mycobacterial lipopeptide Ag, dideoxymycobactin (DDM), we identified and measured binding to a recombinant TCR (TRAV3/ TRBV3-1, KD of ≈100 μM). Detection of ternary CD1a/lipid/TCR interactions enabled development of CD1a tetramers and CD1a multimers with carbohydrate backbones (dextramers), which specifically stained T cells using a mechanism that was dependent on the precise stereochemistry of the peptide backbone and was blocked with a soluble TCR.

View Article and Find Full Text PDF

Human T cell antigen receptors (TCRs) pair in millions of combinations to create complex and unique T cell repertoires for each person. Through the use of tetramers to analyze TCRs reactive to the antigen-presenting molecule CD1b, we detected T cells with highly stereotyped TCR α-chains present among genetically unrelated patients with tuberculosis. The germline-encoded, mycolyl lipid-reactive (GEM) TCRs had an α-chain bearing the variable (V) region TRAV1-2 rearranged to the joining (J) region TRAJ9 with few nontemplated (N)-region additions.

View Article and Find Full Text PDF

Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast.

View Article and Find Full Text PDF
Article Synopsis
  • - Lhx3 is a vital transcription factor for neural cell specialization and pituitary development in vertebrates, with mutations linked to combined pituitary hormone deficiency syndrome (CPHDS).
  • - Recent studies on Lhx3's structure with its partners, Isl1 and Ldb1, help to explore how mutations and modifications impact protein interactions.
  • - The specific mutation Lhx3(Y114C) doesn't change zinc-binding but disrupts the LIM2 domain's structure, potentially weakening Lhx3's ability to bind partners, which is crucial for hormone production in the pituitary gland.
View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells express a semiinvariant αβ T cell receptor (TCR) that binds MHC class I-like molecule (MR1). However, the molecular basis for MAIT TCR recognition by MR1 is unknown. In this study, we present the crystal structure of a human Vα7.

View Article and Find Full Text PDF

Natural killer T cell antigen receptors (NKT TCRs) recognize lipid-based antigens (Ags) presented by CD1d. Although the TCR α-chain is invariant, NKT TCR Vβ exhibits greater diversity, with one (Vβ11) and three (Vβ8, Vβ7, and Vβ2) Vβ chains in humans and mice, respectively. With the exception of the Vβ2 NKT TCR, NKT TCRs possess canonical tyrosine residues within complementarity determining region (CDR) 2β that are critical for CD1d binding.

View Article and Find Full Text PDF

Combinations of LIM homeodomain proteins form a transcriptional "LIM code" to direct the specification of neural cell types. Two paralogous pairs of LIM homeodomain proteins, LIM homeobox protein 3/4 (Lhx3/Lhx4) and Islet-1/2 (Isl1/Isl2), are expressed in developing ventral motor neurons. Lhx3 and Isl1 interact within a well characterized transcriptional complex that triggers motor neuron development, but it was not known whether Lhx4 and Isl2 could participate in equivalent complexes.

View Article and Find Full Text PDF

LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1).

View Article and Find Full Text PDF
Article Synopsis
  • LIM-HD transcription factors create a 'LIM code' essential for determining cell types, specifically in the development of V2 interneurons and motor neurons in the spinal cord.
  • The Lhx3 and Ldb1 complex is crucial for V2 interneuron formation, while the addition of Isl1 switches the complex to specify motor neurons by displacing Lhx3 and forming a ternary complex.
  • Researchers identified a specific binding domain on Isl1 that mimics the Ldb1 binding domain, showcasing how different protein interactions can regulate gene expression and influence cell fate.
View Article and Find Full Text PDF

A stable intramolecular complex comprising the LIM domains of the LIM-homeodomain protein Lhx3 tethered to a peptide region of Isl1 has been engineered, purified and crystallized. The monoclinic crystals belong to space group C2, with unit-cell parameters a = 119, b = 62.2, c = 51.

View Article and Find Full Text PDF