Background: The alignment of multiple protein sequences is one of the most commonly performed tasks in bioinformatics. In spite of considerable research and efforts that have been recently deployed for improving the performance of multiple sequence alignment (MSA) algorithms, finding a highly accurate alignment between multiple protein sequences is still a challenging problem.
Results: We propose a novel and efficient algorithm called, MSAIndelFR, for multiple sequence alignment using the information on the predicted locations of IndelFRs and the computed average log-loss values obtained from IndelFR predictors, each of which is designed for a different protein fold.
Motivation: Insertion/deletion (indel) and amino acid substitution are two common events that lead to the evolution of and variations in protein sequences. Further, many of the human diseases and functional divergence between homologous proteins are more related to indel mutations, even though they occur less often than the substitution mutations do. A reliable identification of indels and their flanking regions is a major challenge in research related to protein evolution, structures and functions.
View Article and Find Full Text PDF