B-cells and antibody-secreting plasma cells are key players in protective immunity, but also in autoimmune disease. To understand their various functions in the initiation and maintenance of autoimmune pathology, a detailed dissection of their functional diversity is mandatory. This requires a detailed phenotypic classification of the diversity of B-cells.
View Article and Find Full Text PDFCholera toxin (CT) and the type II heat-labile enterotoxins (LT-IIa and LT-IIb) are potent immunological adjuvants which are hypothesized to enhance the production of antibody (Ab)-secreting cells, although their mechanisms of action are not fully understood. The treatment of splenic cells with concanavalin A (ConA) plus CT enhanced the production of immunoglobulin A (IgA) and IgM by dividing cells that expressed high levels of major histocompatibility complex class II (MHC-II), CD19, and CD138 and low levels of B220 a phenotype characteristic of plasma blasts. LT-IIa or LT-IIb moderately enhanced IgA and IgM production without enhancing plasma blast differentiation.
View Article and Find Full Text PDFPlasma cells provide humoral immunity. They have traditionally been viewed mainly as short-lived end-stage products of B-cell differentiation that deserve little interest. This view is changing, however, because we now know that plasma cells can survive for long periods in the appropriate survival niches and that they are an independent cellular component of immunological memory.
View Article and Find Full Text PDFImmunological memory, as provided by antibodies, depends on the continued presence of antibody-secreting cells, such as long-lived plasma cells of the bone marrow. Survival niches for these memory plasma cells are limited in number. In an established immune system, acquisition of new plasma cells, generated in response to recent pathogenic challenges, requires elimination of old memory plasma cells.
View Article and Find Full Text PDFFollowing tetanus vaccination, a wave of antibody-secreting cells appear in the peripheral blood composed of vaccine-specific, migratory plasmablasts and plasma cells secreting antibodies specific for other antigens. The latter probably were tissue resident plasma cells formed in earlier immune responses that are mobilized due to competition with the newly formed tetanus-specific plasmablasts. Newly formed plasma cells secreting antibodies specific for a particular antigen/vaccine are accommodated in the bone marrow likely at the global expense of the pre-existing long-lived plasma cell population providing humoral memory for other antigens.
View Article and Find Full Text PDFC-X-C motif chemokine receptor 3 (CXCR3) and CXCR4 expressed on immunoglobulin G (IgG)-plasma-cell precursors formed in memory immune responses are crucial modulators of the homing of these cells. Here, we studied the regulation of the expression of these chemokine receptors during the differentiation of human memory B cells into plasma cells. We show that CXCR3 is absent on CD27- naive B cells but is expressed on a fraction of memory B cells, preferentially on those coexpressing IgG1.
View Article and Find Full Text PDFDespite the important role immunoglobulin G (IgG)-secreting plasma cells play in memory immune responses, the differentiation and homeostasis of these cells are not completely understood. Here, we studied the differentiation of human IgG-secreting cells ex vivo and in vitro, identifying these cells by the cellular affinity matrix technology. Several subpopulations of IgG-secreting cells were identified among the cells isolated from tonsils and bone marrow, particularly differing in the expression levels of CD9, CD19, and CD38.
View Article and Find Full Text PDFNotch receptors expressed on hematopoietic stem cells interact with their ligands on bone marrow stromal cells and thereby control cell fate decisions and survival. We recently demonstrated that Notch signaling is involved in proliferation and survival of B cell-derived tumor cells of classic Hodgkin disease and described a novel mechanism for the oncogenic capacity of Notch. In this study we investigated whether Notch signaling is involved in the tight interactions between neoplastic plasma cells and their bone marrow microenvironment, which are essential for tumor cell growth in multiple myeloma (MM).
View Article and Find Full Text PDFRecent results suggest that plasma cell longevity is not an intrinsic capacity, but depends on yet unknown factors produced in their environment. In this study, we show that the cytokines IL-5, IL-6, TNF-alpha, and stromal cell-derived factor-1alpha as well as signaling via CD44 support the survival of isolated bone marrow plasma cells. The cytokines IL-7 and stem cell factor, crucially important for early B cell development, do not mediate plasma cell survival, indicating that plasma cells and early B cells have different survival requirements.
View Article and Find Full Text PDF