Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2A) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr but instead are hampered by PP2A methylation at leucine 309 or phosphorylation at threonine 304.
View Article and Find Full Text PDFEpitope tags are short, linear antibody recognition sequences that enable detection of tagged fusion proteins by antibodies. Epitope tag position and neighboring sequences potentially affect its recognition by antibodies, and such context-dependent differences in tag binding may have a wide-ranging effect on data interpretation. We tested by Western blotting six antibodies that recognize the c-Myc epitope tag, including monoclonal antibodies 9E10, 4A6, 9B11, and 71D10 and polyclonal antibodies 9106 and A-14.
View Article and Find Full Text PDFThe methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits.
View Article and Find Full Text PDFPURPOSE OF THE STUDY The purpose of our retrospective study is to evaluate 5-year functional and radiological outcomes in patients following corrective osteotomy of the distal radius and ulnar osteotomy for malposition after a distal radius fracture, to identify differences in the outcomes of corrective osteotomies depending on the type of the original fracture according to the AO classification, the grade of arthritis of radiocarpal (RC) joint, surgical approach and the way of stabilisation of the osteotomy. MATERIAL AND METHODS The followed-up group of 22 patients (8 men and 14 women) underwent osteotomy for malposition of distal radius in the period 2007-2011. The age of patients in the followed-up group ranged from 21 to 72 years, with the mean age of 51 years at the time of surgery.
View Article and Find Full Text PDFWestern blotting is one of the most widely used techniques in molecular biology and biochemistry. Prestained proteins are used as molecular weight standards in protein electrophoresis. In the chemiluminescent Western blot analysis, however, these colored protein markers are invisible leaving researchers with the unsatisfying situation that the signal for the protein of interest and the signal for the markers are not captured simultaneously and have to be merged in an error-prone step.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity.
View Article and Find Full Text PDFEntry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2A(Cdc55) phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation.
View Article and Find Full Text PDFWe developed a protein-proximity assay in yeast based on fusing a histone lysine methyltransferase onto a bait and its substrate onto a prey. Upon binding, the prey is stably methylated and detected by methylation-specific antibodies. We applied this approach to detect varying interaction affinities among proteins in a mitogen-activated protein kinase pathway and to detect short-lived interactions between protein phosphatase 2A and its substrates that have so far escaped direct detection.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation.
View Article and Find Full Text PDFCarboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B''-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells.
View Article and Find Full Text PDFSegregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins.
View Article and Find Full Text PDFABalphaC, a major protein phosphatase 2A (PP2A) heterotrimeric enzyme, binds to and regulates the microtubule cytoskeleton and tau. We have shown that ABalphaC protein expression levels are selectively reduced in Alzheimer disease (AD). Notably, the carboxyl methylation of PP2A catalytic subunit (PP2A(C)) is critically required for ABalphaC holoenzyme assembly, and catalyzed by a specific methyltransferase (PPMT).
View Article and Find Full Text PDFThe formation of amyloid-containing senile plaques and tau-rich neurofibrillary tangles are central events in Alzheimer disease (AD) pathogenesis. Significantly, ABalphaC, a major protein phosphatase 2A (PP2A) holoenzyme, specifically binds to and dephosphorylates tau. Deregulation of PP2A results in tau hyperphosphorylation in vivo.
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) holoenzymes consist of a catalytic C subunit, a scaffolding A subunit, and one of several regulatory B subunits that recruit the AC dimer to substrates. PP2A is required for chromosome segregation, but PP2A's substrates in this process remain unknown. To identify PP2A substrates, we carried out a two-hybrid screen with the regulatory B/PR55 subunit.
View Article and Find Full Text PDFIn the introduction the authors analyze the issues of the fractures of talus which is a key connection between the foot and the lower limb. For the prognosis of the healing of fractures of the talus they consider the most important its retrograde vascularization. Further they decribe types of fractures of the talus according to Hawkins.
View Article and Find Full Text PDFInteraction between the heterodimeric form of protein phosphatase 2A (PP2A) and polyomavirus middle T antigen (MT) is required for the subsequent assembly of a transformation-competent MT complex. To investigate the role of PP2A catalytic activity in MT complex formation, we undertook a mutational analysis of the PP2A 36-kDa catalytic C subunit. Several residues likely to be involved in the dephosphorylation mechanism were identified and mutated.
View Article and Find Full Text PDFWe determined the cell cycle-dependent fluctuation of mRNAs that encode different enzymes of the deoxynucleotide metabolism in permanent cell lines of human and murine origin. In normal growing cells, dihydrofolate reductase, thymidine kinase, and both subunits of ribonucleotide reductase all show exactly the same variation. The mRNAs rise near the G1-S boundary, peak in early S phase, and return in G2 to approximately the level of early G1.
View Article and Find Full Text PDFPreviously constructed Swiss mouse 3T3 fibroblasts producing polyomavirus large T antigen after addition of dexamethasone were used to study the transcriptional activation by the viral protein of five genes coding for enzymes involved in DNA synthesis and precursor production, namely, dihydrofolate reductase, thymidine kinase, thymidylate synthase, DNA polymerase alpha, and proliferating-cell nuclear antigen. It was found that all these genes, whose expression is stimulated at the G1/S boundary of the cell cycle after growth stimulation by serum addition, are coordinately trans activated when T antigen is induced in cells previously growth arrested by serum withdrawal. Cell lines carrying the information for a mutant form of large T antigen, in which a glutamic acid residue in the binding site for the retinoblastoma protein was changed into aspartic acid, were constructed to test the involvement of an interaction of T antigen with the retinoblastoma protein in this reaction.
View Article and Find Full Text PDFMany cellular and some virally coded proteins regulating key events in higher cells have been found to be multifunctional. One example of such a protein is the polyomavirus large T antigen, which is involved not only in viral DNA replication and gene expression but also in the induction of the S phase in host cells, in the immortalization of various cell types and in the transactivation of some cellular genes. We recently constructed cell lines in which T antigen was synthesized under the control of a hormone-inducible promoter.
View Article and Find Full Text PDFThe promoter of the murine thymidine kinase gene contains a binding site for transcription factor E2F. Using cell lines (3T3-LT) conditionally expressing polyomavirus large T antigen from a hormone-responsive promoter and reporter gene constructs carrying the thymidine kinase promoter with intact or mutated E2F sites, we show that this E2F site is the target for trans activation by the viral protein. Transcription of the growth-regulated endogenous thymidine kinase gene can be activated in serum-starved, quiescent 3T3-LT cells by induction of T antigen.
View Article and Find Full Text PDFThe induction of an S phase in the host cell is a prerequisite for the lytic replication cycle of polyomavirus. This function was attributed to proteins coded for by the early region of the viral DNA, the T antigens. A consideration of the role of the T antigens in the initiation of a mitogenic response of the host cell has to take into account the recent discovery that virus adsorption is sufficient to induce the synthesis of proteins which are known to appear early after quiescent cells are stimulated by the addition of serum, namely fos, jun, and myc (J.
View Article and Find Full Text PDFSodium butyrate, which blocks the cell cycle of many cell types in the G1 phase, strongly inhibits the synthesis of the transformation related, 53 kDa protein in 3T6 fibroblasts but much less so in SV 40 transformed mouse cells. By several criteria, this effect of the fatty acid appears to be indirect; p 53 synthesis takes place several hours after the butyrate-sensitive step in G1. The results are discussed in the light of a putative role of p 53 in growth control.
View Article and Find Full Text PDF