Background: Treatment with immunotherapy can elicit varying responses across cancer types, and the mechanistic underpinnings that contribute to response vrsus progression remain poorly understood. However, to date there are few preclinical models that accurately represent these disparate disease scenarios.
Methods: Using combinatorial radio-immunotherapy consisting of PD-1 blockade, IL2Rβγ biased signaling, and OX40 agonism we were able to generate preclinical tumor models with conflicting responses, where head and neck squamous cell carcinoma (HNSCC) models respond and pancreatic ductal adenocarcinoma (PDAC) progresses.
CD8-expressing T cells are the main effector cells in cancer immunotherapy. Treatment-induced changes in intratumoral CD8 T cells may represent a biomarker to identify patients responding to cancer immunotherapy. Here, we have used a Zr-radiolabeled human CD8-specific minibody (Zr-Df-IAB22M2C) to monitor CD8 T-cell tumor infiltrates by PET.
View Article and Find Full Text PDFEndogenous antitumor effector T-cell responses and immune-suppressive regulatory T cells (Treg) critically influence the prognosis of patients with cancer, yet many of the mechanisms of how this occurs remain unresolved. On the basis of an analysis of the function, antigen specificity, and distribution of tumor antigen-reactive T cells and Tregs in patients with breast cancer and transgenic mouse tumor models, we showed that tumor-specific Tregs were selectively activated in the bone marrow (BM) and egressed into the peripheral blood. The BM was constantly depleted of tumor-specific Tregs and was instead a site of increased induction and activity of tumor-reactive effector/memory T cells.
View Article and Find Full Text PDFSmartDCs (Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors) consist of highly viable dendritic cells (DCs) induced to differentiate with lentiviral vectors (LVs) after an overnight ex vivo transduction. Tricistronic vectors co-expressing cytokines (granulocyte-macrophage-colony stimulating factor [GM-CSF], interleukin [IL]-4) and a melanoma antigen (tyrosine related protein 2 [TRP2]) were used to transduce mouse bone marrow cells or human monocytes. Sixteen hours after transduction, the cells were dispensed in aliquots and cryopreserved for identity, potency, and safety analyses.
View Article and Find Full Text PDFLentiviruses are retroviruses that are able to transduce both dividing and nondividing cells. Dendritic cells are key players in the innate and adaptive immune responses, and are natural targets for lentiviruses. Lentiviral vectors (LVs) have recently reached the clinical gene therapy arena, prompting their use as clinical vaccines.
View Article and Find Full Text PDFHalting the spread of hepatitis C virus (HCV) and also eradicating HCV in subjects with chronic infection are major goals for global health. To this end, several years of research on HCV vaccine development have led to the conclusion that multi-antigenic and multi-functional vaccine types are necessary for effectiveness against HCV infection. In this study, we evaluated lentiviral vectors (LV) expressing clusters of HCV structural (LV-HCV-S) and non-structural (LV-HCV-NS) genes for future vaccine development.
View Article and Find Full Text PDF