Publications by authors named "Mudit Vaid"

Article Synopsis
  • * In patients with IPF, Bal cells exhibit a profibrotic phenotype, largely due to the activation of the small GTPase Rac1, which is modified by a process called geranylgeranylation.
  • * By enhancing the geranylgeranylation process, Rac1 activation is boosted, leading to increased signaling between macrophages and fibroblasts and promoting fibrotic repair, suggesting that targeting the mevalonate pathway could be an effective strategy to manage dysregulated fibrosis.
View Article and Find Full Text PDF

Ultraviolet B (UVB) radiation induces regulatory T cells (Treg cells) and depletion of these Treg cells alleviates immunosuppression and inhibits photocarcinogenesis in mice. Here, we determined the effects of dietary grape seed proanthocyanidins (GSPs) on the development and activity of UVB-induced Treg cells. C3H/HeN mice fed a GSPs (0.

View Article and Find Full Text PDF

Melanoma is a highly aggressive form of skin cancer and a leading cause of death from skin diseases mainly due to its propensity to metastasis. Due to metastatic tendency, melanoma is often associated with activation of Wnt/β-catenin signaling mechanism. Blocking β-catenin activation may be a good strategy to block melanoma-associated mortality.

View Article and Find Full Text PDF

Melanoma is a highly aggressive form of skin cancer with poor survival rate. Aberrant activation of Wnt/β-catenin has been observed in nearly one-third of human melanoma cases thereby indicating that targeting Wnt/β-catenin signaling could be a promising strategy against melanoma development. In the present study, we determined chemotherapeutic effect of grape seed proanthocyanidins (GSPs) on the growth of melanoma cells and validated their protective effects in vivo using a xenograft mouse model, and assessed if β-catenin is the target of GSP chemotherapeutic effect.

View Article and Find Full Text PDF

Colon cancer development and malignant progression are driven by genetic and epigenetic alterations in tumor cells and by factors from the tumor microenvironment. Cancer cells become reliant on the activity of specific oncogenes and on prosurvival and proliferative signals they receive from the abnormal environment they create and reside in. Accordingly, the response to anticancer therapy is determined by genetic and epigenetic changes that are intrinsic to tumor cells and by the factors present in the tumor microenvironment.

View Article and Find Full Text PDF

Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5'-untranslated regions (5'-UTR) due to differential splicing. The 5'-UTR variant ACD' is exclusively found in transcripts of SP-A1, but not in those of SP-A2.

View Article and Find Full Text PDF

Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis.

View Article and Find Full Text PDF

Cigarette smoking is the major cause of lung cancer. It is therefore important to develop effective strategies that target molecular abnormalities induced by cigarette smoke condensate (CSC). Cigarette smoking increases oxidative stress particularly via activation of NADPH oxidase (NOX), a key source of superoxide anion production.

View Article and Find Full Text PDF

Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180mJ/cm(2)) three times a week for 24weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P<0.

View Article and Find Full Text PDF

Silymarin inhibits UVB-induced immunosuppression in mouse skin. To identify the molecular mechanisms underlying this effect, we used an adoptive transfer approach in which dendritic cells (DCs) from the draining lymph nodes of donor mice that had been UVB-exposed and sensitized to 2,4,-dinitrofluorobenzene (DNFB) were transferred into naïve recipient mice. The contact hypersensitivity (CHS) response of the recipient mice to DNFB was then measured.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation-induced immunosuppression has been implicated in skin carcinogenesis. Grape seed proanthocyanidins (GSPs) have anti-skin carcinogenic effects in mice and GSPs-fed mice exhibit a reduction in UV-induced suppression of allergic contact hypersensitivity (CHS), a prototypic T-cell-mediated response. Here, we report that dietary GSPs did not inhibit UVB-induced suppression of CHS in xeroderma pigmentosum complementation group A (XPA)-deficient mice, which lack nucleotide excision repair mechanisms.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive malignancy that is frequently diagnosed at an advanced stage with poor prognosis. Here, we report the chemotherapeutic effects of bioactive proanthocyanidins from grape seeds (GSPs) as assessed using In Vitro and In Vivo models. Treatment of human pancreatic cancer cells (Miapaca-2, PANC-1 and AsPC-1) with GSPs In Vitro reduced cell viability and increased G2/M phase arrest of the cell cycle leading to induction of apoptosis in a dose- and time-dependent manner.

View Article and Find Full Text PDF

Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells.

View Article and Find Full Text PDF

The importance of epigenetic alterations in the development of various diseases including the cancers has been realized. As epigenetic changes are reversible heritable changes, these can be utilized as an effective strategy for the prevention of cancers. DNA methylation is the most characterized epigenetic mechanism that can be inherited without changing the DNA sequence.

View Article and Find Full Text PDF

Metastatic melanoma is a leading cause of death from skin diseases, and is often associated with activation of Wnt/β-catenin signaling pathway. We have examined the inhibitory effect of silymarin, a plant flavanoid from Silybum marianum, on cell migration of metastasis-specific human melanoma cell lines (A375 and Hs294t) and assessed whether Wnt/β-catenin signaling is the target of silymarin. Using an in vitro invasion assay, we found that treatment of human melanoma cell lines with silymarin resulted in concentration-dependent inhibition of cell migration, which was associated with accumulation of cytosolic β-catenin, while reducing the nuclear accumulation of β-catenin (i.

View Article and Find Full Text PDF

Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E(2) production.

View Article and Find Full Text PDF

The anti-skin carcinogenic effects of green tea catechins have been studied extensively in vitro and in vivo models but the precise epigenetic molecular mechanisms are still unclear. Accumulating data suggest that dietary phytochemicals may alter cancer risk by modifications of epigenetic processes in the cells. The present study was designed to investigate whether tea catechins, particularly (-)-epigallocatechin-3-gallate (EGCG), would modify epigenetic events to regulate DNA methylation-silenced tumor suppressor genes in skin cancer cells.

View Article and Find Full Text PDF

Overexposure of the human skin to solar ultraviolet (UV) radiation is the major etiologic factor for development of skin cancers. Here, we report the results of epigenetic modifications in UV-exposed skin and skin tumors in a systematic manner. The skin and tumor samples were collected after chronic exposure of the skin of SKH-1 hairless mice to UVB radiation using a well-established photocarcinogenesis protocol.

View Article and Find Full Text PDF

The inhibition of UVB-induced immunosuppression by dietary grape seed proanthocyanidins (GSP) has been associated with the induction of interleukin (IL)-12 in mice, and we now confirm that GSPs do not inhibit UVB-induced immunosuppression in IL-12p40 knockout (IL-12 KO) mice and that treatment of these mice with recombinant IL-12 restores the inhibitory effect. To characterize the cell population responsible for the GSP-mediated inhibition of UVB-induced immunosuppression and the role of IL-12 in this process, we used an adoptive transfer approach. Splenocytes and draining lymph nodes were harvested from mice that had been administered dietary GSPs (0.

View Article and Find Full Text PDF

Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of berberine, an isoquinoline alkaloid, on human melanoma cancer cell migration and the molecular mechanisms underlying these effects using melanoma cell lines, A375 and Hs294. Using an in vitro cell migration assay, we show that over expression of cyclooxygenase (COX)-2, its metabolite prostaglandin E₂ (PGE₂) and PGE₂ receptors promote the migration of cells.

View Article and Find Full Text PDF

Dietary grape seed proanthocyanidins (GSP) inhibit photocarcinogenesis in mice; however, the molecular mechanisms underlying this effect have not been fully elucidated. As ultraviolet B (UVB)-induced DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) has been implicated in skin cancer risk, we studied whether dietary GSPs enhance repair of UVB-induced DNA damage and, if so, what is the potential mechanism? Supplementation of GSPs (0.5%, w/w) with AIN76A control diet significantly reduced the levels of CPD(+) cells in UVB-exposed mouse skin; however, GSPs did not significantly reduce UVB-induced CPD(+) cells in the skin of interleukin-12p40 (IL-12) knockout (KO) mice, suggesting that IL-12 is required for the repair of CPDs by GSPs.

View Article and Find Full Text PDF

To develop newer and more effective chemopreventive agents for skin cancer, we assessed the effect of honokiol, a phytochemical from the Magnolia plant, on ultraviolet (UV) radiation-induced skin tumorigenesis using the SKH-1 hairless mouse model. Topical treatment of mice with honokiol in a hydrophilic cream-based topical formulation before or after UVB (180 mJ/cm(2)) irradiation resulted in a significant protection against photocarcinogenesis in terms of tumor multiplicity (28-60%, P < 0.05 to <0.

View Article and Find Full Text PDF

Changes in life style over the past several decades including much of the time spent outdoors and the use of tanning devices for cosmetic purposes by individuals have led to an increase in the incidence of solar ultraviolet (UV) radiation-induced skin diseases including the risk of skin cancers. Solar UV radiations are considered as the most prevalent environmental carcinogens, and chronic exposure of the skin to UV leads to squamous and basal cell carcinoma and melanoma in human population. A wide variety of phytochemicals have been reported to have substantial anti-carcinogenic activity because of their antioxidant and anti-inflammatory properties.

View Article and Find Full Text PDF

UV radiation-induced immunosuppression has been implicated in the development of skin cancers. Green tea polyphenols (GTP) in drinking water prevent photocarcinogenesis in the skin of mice. We studied whether GTPs in drinking water (0.

View Article and Find Full Text PDF

Lung surfactant proteins A and D belong to a group of soluble humoral pattern recognition receptors, called collectins, which modulate the immune response to microorganisms. They bind essential carbohydrate and lipid antigens found on the surface of microorganisms via low affinity C-type lectin domains and regulate the host's response by binding to immune cell surface receptors. They form multimeric structures that bind, agglutinate, opsonise and neutralize many different pathogenic microorganisms including bacteria, yeast, fungi and viruses.

View Article and Find Full Text PDF