In recent years, there has been a growing emphasis on the exploration of sustainable and eco-friendly materials well-suited for advanced applications in the realms of thermoelectrics and optoelectronics. Lead-free halide double perovskites have emerged as a compelling class of materials in this context. Nevertheless, despite their potential utility, thorough investigations into their thermal transport characteristics remain limited.
View Article and Find Full Text PDFIn the hunt for novel materials, we present self-consistent ab initio simulations of the structural stability, electronic profile, and transport properties of f-electron-based RbMO (M = Np, Pu) perovskites within the context of density functional theory. The structural stability and thermodynamic concerns are fixed by relaxing the crystal structure and computing the energy of formation, respectively. Furthermore, the decisive physical features of given materials have been outlined using the optimised lattice constant retrieved from structural optimizations.
View Article and Find Full Text PDF