Publications by authors named "Mucong Li"

Systemic lupus erythematosus (SLE) is becoming a growing public health concern due to increasing disease and economic burdens. Epidemiological information about SLE, especially its incidence rate, is limited in developing countries. In the current study, we sought to investigate the incidence, prevalence, and economic burdens of SLE in urban China.

View Article and Find Full Text PDF

Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with the stone damage in LL.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is a rare complication of primary Sjögren's syndrome (pSS). Several genes have proven to be associated with pSS and PAH. However, there is no study specifically addressing the genetic susceptibility in pSS combined with PAH.

View Article and Find Full Text PDF

Introduction: Intracranial germ cell tumors (iGCTs), comprising of germinoma (GE) and non-germinomatous GCT (NGGCT), are a group of heterogenous brain tumors. Immunohistochemical markers, such as placental-like alkaline phosphatase (PLAP), are commonly used in diagnosis but show moderate sensitivity. Organic cation transporter 3/4 (OCT3/4) has been proposed as a novel biomarker for diagnosis and prognosis of iGCTs.

View Article and Find Full Text PDF

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease with high prevalence and possible poor prognosis. Though the pathogenesis of pSS has not been fully elucidated, B cell hyperactivity is considered as one of the fundamental abnormalities in pSS patients. It has long been identified that Janus kinases-signal transducer and activator of transcription (JAK-STAT) signaling pathway contributes to rheumatoid arthritis and systemic lupus erythematosus.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the clinical characteristics, outcomes, and associated factors of patients with systemic lupus erythematosus-associated diffusive alveolar hemorrhage (SLE-DAH) stratified by infection status in a national representative cohort.

Methods: This single-center retrospective study included 124 consecutive patients with SLE-DAH in a tertiary care center between 2006 and 2021. The diagnosis of DAH was made based on a comprehensive evaluation of clinical manifestations, laboratory and radiologic findings, and bronchoalveolar lavage.

View Article and Find Full Text PDF

Optogenetic manipulation and optical imaging in the near-infrared range allow non-invasive light-control and readout of cellular and organismal processes in deep tissues in vivo. Here, we exploit the advantages of Rhodopseudomonas palustris BphP1 bacterial phytochrome, which incorporates biliverdin chromophore and reversibly photoswitches between the ground (740-800 nm) and activated (620-680 nm) states, to generate a loxP-BphP1 transgenic mouse model. The mouse enables Cre-dependent temporal and spatial targeting of BphP1 expression in vivo.

View Article and Find Full Text PDF

Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x -ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the clinical characteristics and outcomes of pregnancy complicated by SLE-associated pulmonary arterial hypertension (SLE-PAH) in a case series and literature review.

Methods: This single-centre retrospective study included 10 consecutive pregnancies complicated by SLE-PAH confirmed by right heart catheterisation (RHC) at Peking Union Medical College Hospital between 2009 and 2020. A literature search was conducted and 14 pregnancy cases complicated by SLE-PAH were reviewed.

View Article and Find Full Text PDF

Mechanical high-intensity focused ultrasound (HIFU) has been used for cancer treatment and drug delivery. Existing monitoring methods for mechanical HIFU therapies such as MRI and ultrasound imaging often suffer from high cost, poor spatial-temporal resolution, and/or low sensitivity to tissue's hemodynamic changes. Evaluating vascular injury during mechanical HIFU treatment, therefore, remains challenging.

View Article and Find Full Text PDF

Shock wave lithotripsy (SWL) has been widely used for non-invasive treatment of kidney stones. Cavitation plays an important role in stone fragmentation, yet it may also contribute to renal injury during SWL. It is therefore crucial to determine the spatiotemporal distributions of cavitation activities to maximize stone fragmentation while minimizing tissue injury.

View Article and Find Full Text PDF

Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery (FUS). PCM can be used as an adjunct to magnetic resonance imaging to provide crucial information on the safety and efficacy of FUS. The most widely used algorithm for PCM is delay-and-sum (DAS).

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers.

View Article and Find Full Text PDF

Objectives: Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease that may lead to considerable physical, psychological, and socioeconomical burden. In previous studies, inconsistent results were reported for the association of disease activity and organ damage with health-related quality of life (HRQoL). This paper aimed to explore the relationship between disease activity, organ damage, and HRQoL measured by SF-36, EQ-5D, LupusQoL, and LupusPRO and investigate whether the correlation is region-specific.

View Article and Find Full Text PDF

The penetration depth of photoacoustic imaging in biological tissues has been fundamentally limited by the strong optical attenuation when light is delivered externally through the tissue surface. To address this issue, we previously reported internal-illumination photoacoustic imaging using a customized radial-emission optical fiber diffuser, which, however, has complex fabrication, high cost, and non-uniform light emission. To overcome these shortcomings, we have developed a new type of low-cost fiber diffusers based on a graded-scattering method in which the optical scattering of the fiber diffuser is gradually increased as the light travels.

View Article and Find Full Text PDF

Unlabelled: With balanced spatial resolution, penetration depth, and imaging speed, photoacoustic computed tomography (PACT) is promising for clinical translation such as in breast cancer screening, functional brain imaging, and surgical guidance. Typically using a linear ultrasound (US) transducer array, PACT has great flexibility for hand-held applications. However, the linear US transducer array has a limited detection angle range and frequency bandwidth, resulting in limited-view and limited-bandwidth artifacts in the reconstructed PACT images.

View Article and Find Full Text PDF

Kidney stone disease is a major health problem worldwide. Shockwave lithotripsy (SWL), which uses high-energy shockwave pulses to break up kidney stones, is extensively used in clinic. However, despite its noninvasiveness, SWL can produce cavitation in vivo.

View Article and Find Full Text PDF

Temperature mapping is essential in many biomedical studies and interventions to precisely control the tissue's thermal conditions for optimal treatment efficiency and minimal side effects. Based on the Grüneisen parameter's temperature dependence, photoacoustic (PA) imaging can provide relative temperature measurement, but it has been traditionally challenging to measure absolute temperatures without knowing the baseline temperature, especially in deep tissues with unknown optical and acoustic properties. Here, we report a new thermal-energy-memory-based photoacoustic thermometry (TEMPT).

View Article and Find Full Text PDF

Non-invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high-frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) is a hybrid imaging modality that combines rich contrast of optical excitation and deep penetration of ultrasound detection. With its unique optical absorption contrast mechanism, PAT is inherently sensitive to the functional and molecular information of biological tissues, and thus has been widely used in preclinical and clinical studies. Among many functional capabilities of PAT, measuring blood oxygenation is arguably one of the most important applications, and has been widely performed in photoacoustic studies of brain functions, tumor hypoxia, wound healing, and cancer therapy.

View Article and Find Full Text PDF

We developed a linear ultrasound array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld photoacoustic imaging probe for guiding sentinel lymph node (SLN) needle biopsy. Compared with previous studies, our system and probe have the following advantages: (1) the imaging probe is quite compact and user-friendly; (2) laser illumination and ultrasonic detection are achieved coaxially, enabling high signal-to-noise ratio; and (3) GPU-based image reconstruction enables real-time imaging and displaying at a frame rate of 20 Hz. With the system and probe, clear visualization of the SLN at the depth of 2 cm (~human SLN depth) was demonstrated on a living rat.

View Article and Find Full Text PDF

We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets.

View Article and Find Full Text PDF