Polycyclic aromatic hydrocarbons (PAHs) are chemicals that are released into the environment during activities of the petroleum industry. The bioaccumulation, carcinogenic and mutagenic potential of PAHs necessitates the bioremediation of these contaminants. However, bioremediation of PAHs has a number of limitations including the inability of a single microbe to degrade all of the PAH fraction's environmental constituents.
View Article and Find Full Text PDFThe innovative research in genome editing domains such as CRISPR-Cas technology has enabled genetic engineers to manipulate the genomes of living organisms effectively in order to develop the next generation of therapeutic tools. This technique has started the new era of "genome surgery". Despite these advances, the barriers of CRISPR-Cas9 techniques in clinical applications include efficient delivery of CRISPR/Cas9 and risk of off-target effects.
View Article and Find Full Text PDFUnderstanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods.
View Article and Find Full Text PDFGene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system.
View Article and Find Full Text PDFThe potential of six ancient Tuscan sweet cherry ( L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (s) and three cytochrome P450s (s) that are putatively involved in the triterpene production pathway in sweet cherries.
View Article and Find Full Text PDF