Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression.
View Article and Find Full Text PDFTRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes.
View Article and Find Full Text PDFTEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution.
View Article and Find Full Text PDFNerve-binding fluorophores with near-infrared (NIR; 650 to 900 nm) emission could reduce iatrogenic nerve injury rates by providing surgeons precise, real-time visualization of the peripheral nervous system. Unfortunately, current systemically administered nerve contrast agents predominantly emit at visible wavelengths and show nonspecific uptake in surrounding tissues such as adipose, muscle, and facia, thus limiting detection to surgically exposed surface-level nerves. Here, a focused NIR fluorophore library was synthesized and screened through multi-tiered optical and pharmacological assays to identify nerve-binding fluorophore candidates for clinical translation.
View Article and Find Full Text PDF