In this case report, a 33-year-old male with a history of smoking presented with recurrent palpitations and chest discomfort. Holter monitoring revealed atrial flutter, and imaging showed a giant left atrial appendage aneurysm. Due to the risk of arrhythmias and thromboembolic events, surgical resection was performed successfully.
View Article and Find Full Text PDFIn photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps.
View Article and Find Full Text PDFLight-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles.
View Article and Find Full Text PDFPhotosynthetic light harvesting can occur with a remarkable near-unity quantum efficiency. The B800-850 complex, also known as light-harvesting complex 2 (LH2), is the primary light-harvesting complex in purple bacteria and has been extensively studied as a model system. The bacteriochlorophylls of the B800-850 complex are organized into two concentric rings, known as the B800 and B850 rings.
View Article and Find Full Text PDFRoaming chemical reactions are often associated with neutral molecules. The recent findings of roaming processes in ionic species, in particular, ones that lead to the formation of H under strong-field laser excitation, are of considerable interest. Given that such gas-phase reactions are initiated by double ionization and subsequently facilitated through deprotonation, we investigate the strong-field photodissociation of ethanethiol, also known as ethyl mercaptan, and compare it to results from ethanol.
View Article and Find Full Text PDFBacteriorhodopsin represents the simplest, and possibly most abundant, phototropic system requiring only a retinal-bound transmembrane protein to convert photons of light to an energy-generating proton gradient. The creation and interrogation of a microbial rhodopsin mimic, based on an orthogonal protein system, would illuminate the design elements required to generate new photoactive proteins with novel function. We describe a microbial rhodopsin mimic, created using a small soluble protein as a template, that specifically photoisomerizes all- trans to 13- cis retinal followed by thermal relaxation to the all- trans isomer, mimicking the bacteriorhodopsin photocycle, in a single crystal.
View Article and Find Full Text PDFRoaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H roaming prior to H formation are uncovered.
View Article and Find Full Text PDFMolecular reactivity can change dramatically with the absorption of a photon due to the difference of the electronic configurations between the excited and ground states. Here we report on the discovery of a modular system (Schiff base formed from an aldehyde and an amine) that upon photoexcitation yields a more basic imine capable of intermolecular proton transfer from protic solvents. Ultrafast dynamics of the excited state conjugated Schiff base reveals the pathway for proton transfer, culminating in a 14-unit increase in pK to give the excited state pK >20 in ethanol.
View Article and Find Full Text PDFStrong-field laser-matter interactions often lead to exotic chemical reactions. Trihydrogen cation formation from organic molecules is one such case that requires multiple bonds to break and form. We present evidence for the existence of two different reaction pathways for H formation from organic molecules irradiated by a strong-field laser.
View Article and Find Full Text PDFThe optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface.
View Article and Find Full Text PDFWhile the interaction of atoms in strong fields is well understood, the same cannot be said about molecules. We consider how dissociative ionization of molecules depends on the quality of the femtosecond laser pulses, in particular, the presence of third- and fourth-order dispersion. We find that high-order dispersion (HOD) unexpectedly results in order-of-magnitude enhanced ion yields, along with the factor of 3 greater kinetic energy release compared to transform-limited pulses with equal peak intensities.
View Article and Find Full Text PDFFast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha's rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp.
View Article and Find Full Text PDFDifferences in the excited state dynamics of molecules and photo-activated drugs either in solution or confined inside protein pockets or large biological macromolecules occur within the first few hundred femtoseconds. Shaped femtosecond laser pulses are used to probe the behavior of indocyanine green (ICG), the only Food and Drug Administration (FDA) approved near-infrared dye and photodynamic therapy agent, while free in solution and while confined inside the pocket of the human serum albumin (HSA) protein. Experimental findings indicate that the HSA pocket hinders torsional motion and thus mitigates the triplet state formation in ICG.
View Article and Find Full Text PDF