Presented here is a reactively loaded microstrip transmission line that exhibit an ultra-wide bandgap. The reactive loading is periodically distributed along the transmission line, which is electromagnetically coupled. The reactive load consists of a circular shaped patch which is converted to a metamaterial structure by embedded on it two concentric slit-rings.
View Article and Find Full Text PDFIn this paper, a high-performance antenna-on-chip (AoC) is implemented on gallium arsenide (GaAs) wafer based on the substrate integrated waveguide (SIW) and metasurface (MTS) technologies for terahertz band applications. The proposed antenna is constructed using five stacked layers comprising metal-GaAs-metal-GaAs-metal. The conductive electromagnetic radiators are implemented on the upper side of the top GaAs layer, which has a metallic ground-plane at its underside.
View Article and Find Full Text PDFIn this paper, a dual-band implantable rectenna is proposed for recharging and operating biomedical implantable devices at 0.915 and 2.45 GHz.
View Article and Find Full Text PDFMaintaining small size has become an important consideration in the design of contemporary antenna structures. In the case of broadband circularly polarized (CP) antennas, miniaturization is a challenging process due to the necessity of simultaneous handling of electrical and field properties (reflection, axial ratio, gain), as well as ensuring sufficient frequency range of operation, especially at the lower edge of the antenna bandwidth. An additional difficulty is that-for the sake of reliability-the design process has to be based on full-wave electromagnetic simulation tools.
View Article and Find Full Text PDFGraphene devices have been widely explored for photonic applications, as they serve as promising candidates for controlling light interactions resulting in extreme confinement and tunability of graphene plasmons. The ubiquitous presence of surface crumples in graphene, very less is known on how the crumples in graphene can affect surface plasmon resonance and its absorption properties. In this article, a novel approach based on the crumpled graphene is investigated to realize broadband tunability of plasmonic resonance through the mechanical reconfiguration of crumpled graphene resonators.
View Article and Find Full Text PDF