Publications by authors named "Muamer Kadic"

Evanescent Bloch waves are eigensolutions of spatially periodic problems for complex-valued wavenumbers at finite frequencies, corresponding to solutions that oscillate in time and space and that exponentially decay in space. Such evanescent waves are ubiquitous in optics, plasmonics, elasticity, and acoustics. In the limit of zero frequency, the wave "freezes" in time.

View Article and Find Full Text PDF

Graphene rings have great prospects in the fields of biological modulators, electrochemical biosensors, and resonators, but are prone to wrinkling which can affect their physical properties. This work establishes a theoretical model predicting the torsional wrinkling behavior of defective monolayer graphene rings, which provides direct understanding and reliable accuracy of the wrinkle levels. Then the thermal conductivity of wrinkled graphene rings is studied considering different wrinkle levels, defect concentrations and radii.

View Article and Find Full Text PDF

The enhancement of optical waves through perforated plates has received particular attention over the past two decades. This phenomenon can occur due to two distinct and independent mechanisms, namely, nanoscale enhanced optical transmission and micron-scale Fabry-Perot resonance. The aim of the present paper is to shed light on the coupling potential between two neighboring slots filled with two different materials with contrasting physical properties (air and silicon, for example).

View Article and Find Full Text PDF

In many cases, the hybridization of two or more excitation modes in solids has led to new and useful dispersion relations of waves. Well-studied examples are phonon polaritons, plasmon polaritons, particle-plasmon polaritons, cavity polaritons, and magnetic resonances at optical frequencies. In all of these cases, the lowest propagating mode couples to a finite-frequency localized resonance.

View Article and Find Full Text PDF

The dispersive feature of metals at higher frequencies has opened up a plethora of applications in plasmonics. Besides, Extraordinary Optical Transmission (EOT) reported by Ebbesen et al. in the late 90's has sparked particular interest among the scientific community through the unprecedented and singular way to steer and enhance optical energies.

View Article and Find Full Text PDF

Non-Newtonian liquids are characterized by stress and velocity-dependent dynamical response. In elasticity, and in particular, in the field of phononics, reciprocity in the equations acts against obtaining a directional response for passive media. Active stimuli-responsive materials have been conceived to overcome it.

View Article and Find Full Text PDF

We experimentally demonstrate, based on a generic concept for creating 1-to-M couplers, single-mode 3D optical splitters leveraging adiabatic power transfer towards up to 4 output ports. We use the CMOS compatible additive (3+1)D flash-two-photon polymerization (TPP) printing for fast and scalable fabrication. Optical coupling losses of our splitters are reduced below our measurement sensitivity of 0.

View Article and Find Full Text PDF

Mechanical metamaterials, also known as architected materials, are rationally designed composites, aiming at elastic behaviors and effective mechanical properties beyond ('meta') those of their individual ingredients-qualitatively and/or quantitatively. Due to advances in computational science and manufacturing, this field has progressed considerably throughout the last decade. Here, we review its mathematical basis in the spirit of a tutorial, and summarize the conceptual as well as experimental state-of-the-art.

View Article and Find Full Text PDF

Today, continued miniaturization in electronic integrated circuits (ICs) appears to have reached its fundamental limit at ∼2 nm feature-sizes, from originally ∼1 cm. At the same time, energy consumption due to communication becomes the dominant limitation in high performance electronic ICs for computing, and modern computing concepts such neural networks further amplify the challenge. Communication based on co-integrated photonic circuits is a promising strategy to address the second.

View Article and Find Full Text PDF

The ability to significantly change the mechanical and wave propagation properties of a structure without rebuilding it is currently one of the main challenges in the field of mechanical metamaterials. This stems from the enormous appeal that such tunable behavior may offer from the perspective of applications ranging from biomedical to protective devices, particularly in the case of micro-scale systems. In this work, a novel micro-scale mechanical metamaterial is proposed that can undergo a transition from one type of configuration to another, with one configuration having a very negative Poisson's ratio, corresponding to strong auxeticity, and the other having a highly positive Poisson's ratio.

View Article and Find Full Text PDF

In classical Cauchy elasticity, 3D materials exhibit six eigenmodes of deformation. Following the 1995 work of Milton and Cherkaev, extremal elastic materials can be classified by the number of eigenmodes, N, out of these six that are "easy". Using Greek number words, this leads to hexamode (N = 6), pentamode (N = 5), tetramode (N = 4), trimode (N = 3), dimode (N = 2), and monomode (N = 1) materials.

View Article and Find Full Text PDF

Metamaterials are artificial materials in which the atoms of ordinary solids are replaced by tailored functional building blocks. Therefore, previous work has emphasized tailoring the inside of the building blocks, for example, by exploiting local resonances, to realize unusual effective metamaterial properties. However, the wave properties of a metamaterial are not only determined by its building blocks but also by the interactions between these building blocks.

View Article and Find Full Text PDF

In solid state physics, phase transitions can influence material functionality and alter their properties. In mechanical metamaterials, structural-phase transitions can be achieved through instability or buckling of certain structural elements. However, these fast transitions in one mechanical parameter typically affect significantly the remaining parameters, hence, limiting their applications.

View Article and Find Full Text PDF

Three-dimensional direct laser writing technology enables one to print polymer microstructures whose size varies from a few hundred nanometers to a few millimeters. It has been shown that, by tuning the laser power during writing, one can adjust continuously the optical and elastic properties with the same base material. This process is referred to as gray-tone lithography.

View Article and Find Full Text PDF
Article Synopsis
  • Stepper motors and actuators are crucial components in control motion devices, characterized by their complex assembly and large size due to multifunctionality.
  • This paper presents a new single-step lithography method to create a micro-stepper engine that achieves precise micrometric rotation and is smaller than a millimeter.
  • The device uses frictional contacts and chiral metamaterials to minimize reliance on part accuracy, and its performance is evaluated over multiple rotation cycles and varying frictional surfaces.
View Article and Find Full Text PDF

Shape morphing and the possibility of having control over mechanical properties via designed deformations have attracted a lot of attention in the materials community and led to a variety of applications with an emphasis on the space industry. However, current materials normally do not allow to have a full control over the deformation pattern and often fail to replicate such behavior at low scales which is essential in flexible electronics. Thus, in this paper, novel 2D and 3D microscopic hierarchical mechanical metamaterials using mutually-competing substructures within the system that are capable of exhibiting a broad range of the highly unusual auxetic behavior are proposed.

View Article and Find Full Text PDF

Previously, rotons were observed in correlated quantum systems at low temperatures, including superfluid helium and Bose-Einstein condensates. Here, following a recent theoretical proposal, we report the direct experimental observation of roton-like dispersion relations in two different three-dimensional metamaterials under ambient conditions. One experiment uses transverse elastic waves in microscale metamaterials at ultrasound frequencies.

View Article and Find Full Text PDF

Roton dispersion relations have been restricted to correlated quantum systems at low temperatures, such as liquid Helium-4, thin films of Helium-3, and Bose-Einstein condensates. This unusual kind of dispersion relation provides broadband acoustical backward waves, connected to energy flow vortices due to a "return flow", in the words of Feynman, and three different coexisting acoustical modes with the same polarization at one frequency. By building mechanisms into the unit cells of artificial materials, metamaterials allow for molding the flow of waves.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the elastic properties of 3D crystalline mechanical metamaterials, highlighting their anisotropic nature compared to amorphous structures.
  • By focusing on 3D periodic approximants of icosahedral quasicrystalline metamaterials made of chiral metarods, the research aims for isotropic linear elastic wave propagation.
  • The findings reveal that increasing the order of these approximants leads to nearly isotropic sound speeds and acoustical activity, linked to chiral acoustic phonons in all directions.
View Article and Find Full Text PDF

We propose a design of cylindrical cloak for coupled in-plane shear waves consisting of concentric layers of sub-wavelength resonant stress-free inclusions shaped as Swiss rolls. The scaling factor between inclusions' sizes is according to Pendry's transform. Unlike the hitherto known situations, the present geometric transform starts from a Willis medium and further assumes that displacement fields u in original medium and u ' in transformed medium remain unaffected ( u ' = u ).

View Article and Find Full Text PDF

Pentamode metamaterials have been used as a crucial element to achieve elastical unfeelability cloaking devices. They are seen as potentially fragile and not simple for integration in anisotropic structures due to a non-centrosymmetric crystalline structure. Here, we introduce a new class of pentamode metamaterial with centrosymmetry, which shows better performances regarding stiffness, toughness, stability and size dependence.

View Article and Find Full Text PDF

Optical activity requires chirality and is a paradigm for chirality. Here, we present experiments on its mechanical counterpart, acoustical activity. The notion "activity" refers the rotation of the linear polarization axis of a transversely polarized (optical or mechanical) wave.

View Article and Find Full Text PDF

Rationally designed artificial materials enable mechanical properties that are inaccessible with ordinary materials. Pushing on an ordinary linearly elastic bar can cause it to be deformed in many ways. However, a twist, the counterpart of optical activity in the static case, is strictly zero.

View Article and Find Full Text PDF

Effectively inverting the sign of material parameters is a striking possibility arising from the concept of metamaterials. Here, we show that the electrical properties of a p-type semiconductor can be mimicked by a metamaterial solely made of an n-type semiconductor. By fabricating and characterizing three-dimensional simple-cubic microlattices composed of interlocked hollow semiconducting tori, we demonstrate that sign and magnitude of the effective metamaterial Hall coefficient can be adjusted via a tori separation parameter-in agreement with previous theoretical and numerical predictions.

View Article and Find Full Text PDF