Background: The genetic mechanisms that underlie phenotypic differentiation in breeding animals have important implications in evolutionary biology and agriculture. However, the contribution of cis-regulatory variants to pig phenotypes is poorly understood. Therefore, our aim was to elucidate the molecular mechanisms by which non-coding variants cause phenotypic differences in pigs by combining evolutionary biology analyses and functional genomics.
View Article and Find Full Text PDFRNA editing generates genetic diversity in mammals by altering amino acid sequences, miRNA targeting site sequences, influencing the stability of targeted RNAs, and causing changes in gene expression. However, the extent to which RNA editing affect gene expression via modifying miRNA binding site remains unexplored. Here, we first profiled the dynamic A-to-I RNA editome across tissues of Duroc and Luchuan pigs.
View Article and Find Full Text PDFNucleic Acids Res
February 2021
DNA methylation is important for the epigenetic regulation of gene expression and plays a critical role in mammalian development. However, the dynamic regulation of genome-wide DNA methylation in skeletal muscle development remains largely unknown. Here, we generated the first single-base resolution DNA methylome and transcriptome maps of porcine skeletal muscle across 27 developmental stages.
View Article and Find Full Text PDFThe microRNAs (miRNAs) play an important role in regulating myogenesis by targeting mRNA. However, the understanding of miRNAs in skeletal muscle development and diseases is unclear. In this study, we firstly performed the transcriptome profiling in differentiating C2C12 myoblast cells.
View Article and Find Full Text PDFThe pig () is not only an important livestock animal but also widely used as a biomedical model. However, the understanding of the molecular characteristics of organs and of the developmental skeletal muscle of the pig is severely limited. Here, we performed a comprehensive transcriptome profiling of mRNAs and miRNAs across nine tissues and three skeletal muscle developmental stages in the Guizhou miniature pig.
View Article and Find Full Text PDFBackground: CMY-2 is the most prevalent pAmpC β-lactamase, but the chromosomal gene transfer via horizontal transmission has been seldom reported. This study aimed to describe an IS-mediated transposition of a chromosomal gene from into a small endogenous ColE1-like plasmid, resulting in elevated resistance to extended-spectrum cephalosporins.
Methods: Three ESCs-resistant ST641 strains EC6413, EC4103 and EC5106 harbored the gene.
The cfr gene associated with linezolid resistance has attracted wide attention. However, little is known about its prevalence and mode of transmission in Enterococcus faecalis. In this study, we investigate the prevalence and genetic environment of the cfr gene in 91 E.
View Article and Find Full Text PDFIn this study we isolated 109 Enterococcus faecalis from chicken faecal samples in 6 provinces of China to investigate the prevalence and transmission mechanism of the bacitracin resistance locus bcrABDR in E. faecalis. Thirty-seven bcrABDR-positive E.
View Article and Find Full Text PDFThe association of ESBLs (extended-spectrum beta-lactamases)/pAmpCs (plasmid-mediated AmpC β-lactamases) with PMQR (plasmid mediated quinolone resistance) in gram-negative bacteria has been of great concern. The present study was performed to characterize the diversity, gene location, genetic context, and evolution of ampC and qnrB alleles in isolates of Citrobacter freundii. Fifteen isolates of C.
View Article and Find Full Text PDFIn this study, 619 individual Escherichia coli isolates from food-producing and companion animals were analysed to determine the prevalence of the cephalosporinase gene blaCMY-2. In total, 18 CMY-2-producers (2.9%) were detected and exhibited multidrug-resistant phenotypes.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2015
We report the complete nucleotide sequence of a plasmid carrying the multiresistance gene cfr. This plasmid was isolated from an Escherichia coli strain of swine origin in 2011. This 37,672-bp plasmid, pSD11, had an IncX4 backbone similar to those of the IncX4 plasmids obtained from the United States and Australia, in which the cfr gene was flanked by two copies of IS26 and a truncated Tn1331 was inserted.
View Article and Find Full Text PDF