Three key factors are responsible for the biomechanical performance of pedicle screw fixation: screw mechanical characteristics, bone quality and insertion techniques. To the best of the authors' knowledge, no study has directly compared the biomechanical performance among three trajectories, i.e.
View Article and Find Full Text PDFPolymethylmethacrylate (PMMA) has been applied clinically and biomechanically repair loose pedicle screws. Controversies have arisen over data due to uncontrolled cement properties, various locations and sizes of fenestrated holes in repair screws, irregular holes and different bone densities of specimens. In this study, the pullout strength was compared for two techniques, the modified technique to use PMMA to augment a threaded hole and the traditional technique with retrograde injection of a PMMA filling, for standard loose screws in porcine vertebrae.
View Article and Find Full Text PDFStudy Design: Biomechanical study.
Objective: Cross-links are a type of common clinical spinal instrumentation. However, the effects of the position and number of cross-links have never been investigated in long-segment spinal fixation, and the variables have not been optimized.
Screw loosening due to broken pedicles is a common complication resulting from the insertion of screws either with inadequate diameters or into an osteoporotic pedicle. In this novel in vitro study, we tried to clarify the contribution of the pedicle to screw fixation and subsequent salvage strategies using longer or larger-diameter screws in broken pedicles. Sixty L4 fresh-frozen lumbar vertebrae harvested from mature pigs were designed as the normal-density group (n = 30) and decalcified as the osteoporosis group (n = 30).
View Article and Find Full Text PDFPedicle screw loosening resulting from insufficient bone-screw interfacial holding power is not uncommon. The screw shape and thread profile are considered important factors of the screw fixation strength. This work investigated the difference in pullout strength between conical and cylindrical screws with three different thread designs.
View Article and Find Full Text PDFPedicles are often broken when screws are inserted into hard pedicles with small diameters or when the diameter of the screw itself is inadequate. However, there is a lack of biomechanical literature that addresses screw loosening as a result of broken pedicles or the resulting salvage of those screws. We performed a novel in vitro study to compare the pullout strength of screws between intact pedicles and two different types of broken pedicles; strategies to prevent screw loosening were also compared.
View Article and Find Full Text PDFPolymethylmethacrylate (PMMA) bone cement is a popular bone void filler for vertebroplasty. However, the use of PMMA has some drawbacks, including the material's excessive stiffness, exothermic polymerization, and short handling time. This study aimed to create an ideal modified bone cement to solve the above-mentioned problems.
View Article and Find Full Text PDFExpansive pedicle screws significantly improve fixation strength in osteoporotic spines. However, the previous literature does not adequately address the effects of the number of lengthwise slits and the extent of screw expansion on the strength of the bone/screw interface when expansive screws are used with or without cement augmentation. Herein, four designs for expansive pedicle screws with different numbers of lengthwise slits and different screw expansion levels were evaluated.
View Article and Find Full Text PDFBackground: The biomechanical performance of the hooks and screws in spinal posterior instrumentation is not well-characterized. Screw-bone interface failure at the uppermost and lowermost vertebrae is not uncommon. Some have advocated for the use of supplement hooks to prevent screw loosening.
View Article and Find Full Text PDF