Oligo(ethylene glycols) 1a-h, which are incorporated with one to eight 2,3-naphthylene units, respectively, have been synthesized and characterized. The conformational changes of the new oligomers have been investigated in chloroform-acetonitrile binary solvents by the UV-vis, (1)H NMR, and fluorescent spectroscopy. It has been revealed that the naphthalene units in hexamer 1f, heptamer 1g, and octamer 1h are driven by solvophobic interaction to stack in polar solvents.
View Article and Find Full Text PDFDonor-acceptor interaction between electron-rich 1,5-dioxynaphthalene (DAN) and electron-deficient pyromellitic diimide (PDI) has been utilized to induce the formation of a new kind of zipper-featured delta-peptide foldamers. Seven l-ornithine-based delta-peptides 1a-g, in which one to three DNA and PDI units are incorporated to the two ends of the peptide backbones, respectively, have been designed and prepared by the standard liquid-phase synthetic method. (1)H NMR, UV-vis, and fluorescent quenching studies reveal that all the delta-peptides adopt folding conformations in nonpolar chloroform and polar DMF as a result of intramolecular donor-acceptor interaction between the DAN and PDI units.
View Article and Find Full Text PDF[structure: see text] The first class of zipper-shaped artificial duplexes, which are driven by multiple donor-acceptor interactions between electron-rich 1,5-dioxynaphthalene or 1,4-dioxybenzene and electron-deficient pyromellitic dimide units, have been studied in organic media by (1)H NMR, UV-vis, and vapor pressure osmometry. (1)H NMR binding investigations reveal substantial cooperativity of the donor-acceptor interaction in the duplexes.
View Article and Find Full Text PDF