Publications by authors named "Mu-Tan Luo"

Cellulose-based superabsorbent was synthesized by bacterial cellulose (BC) grafting acrylic acid (AA) in the presence of ,'-methylenebisacrylamide (NMBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The influence of different factors on composite synthesis, including the weight ratio of the monomer to BC, initiator content, crosslinker content, AA neutralization degree, reaction temperature, and reaction time on the water absorbency of the composite, were systematically learned. Under the optimized conditions, the maximum water absorbency of the composite was 322 ± 23 g/g distilled water.

View Article and Find Full Text PDF

A simple and accurate Nile Red fluorescent method was built to evaluate the lipid content of three different oleaginous yeasts by one standard curve. The staining of cells can be observed clearly by laser scanning confocal microscope, showing that Nile Red can enter into the cells of oleaginous yeasts easily. A series of conditions such as pretreating temperature, cell suspension concentration (OD), staining time, Nile Red concentration and the type of suspension solvent were learnt systematically to obtain the optimal process parameters for Nile Red staining.

View Article and Find Full Text PDF

Superabsorbent was synthesized from bacterial cellulose (BC) generated by in situ fermentation on bentonite inorganic gel (BIG). For BIG preparation, the effect of sodium agent's type and content, temperature and time of sodium-modification, and gelling agent's type and content on the viscosity of BIG were learned to optimize the synthesis process. For polymerization, the effect of different factors including ratio of monomer to substrate (modified BC from in situ fermentation), content of initiator and crosslinker, monomer neutralization degree, reaction temperature and time on the performance of composite (superabsorbent) synthesized were analyzed.

View Article and Find Full Text PDF

In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH content in biogas were 0.

View Article and Find Full Text PDF

Durian is one important tropical fruit with high nutritional value, but its shell is usually useless and considered as waste. To explore the efficient and high-value utilization of this agricultural and food waste, in this study, durian shell was simply hydrolyzed by dilute sulfuric acid, and the durian shell hydrolysate after detoxification was used for bacterial cellulose (BC) production by for the first time. BC was synthesized in static culture for 10 days and the highest BC yield (2.

View Article and Find Full Text PDF

Biomass acid hydrolysate of oleaginous yeast Trichosporon cutaneum after microbial oil extraction was applied as substrate for bacterial cellulose (BC) production by Komagataeibacter xylinus (also named as Gluconacetobacter xylinus previously) for the first time. BC was synthesized in static culture for 10 days, and the maximum BC yield (2.9 g/L) was got at the 4th day of fermentation.

View Article and Find Full Text PDF

Background: Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways ("" lipid fermentation and "" lipid fermentation).

View Article and Find Full Text PDF

Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically.

View Article and Find Full Text PDF