Publications by authors named "Mu-Sen Liu"

Polymerase β (POLB), with dual functionality as a lyase and polymerase, plays a critical role in the base excision repair (BER) pathway to maintain genomic stability. POLB knockout and rescue studies in BRCA1/2-mutant cancer cell lines revealed that inhibition of lyase and polymerase activity is required for the synthetic lethal interaction observed with PARP inhibitors, highlighting POLB as a valuable therapeutic target. Traditional biochemical assays to screen for enzyme inhibitors focus on a single substrate to product relationship and limit the comprehensive analysis of enzymes such as POLB that utilize multiple substrates or catalyze a multi-step reaction.

View Article and Find Full Text PDF

CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood. Although Cas9 variants with greater discrimination against mismatches have been designed, these suffer from substantially reduced rates of on-target DNA cleavage. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage.

View Article and Find Full Text PDF

CRISPR/Cas9 is a programmable genome editing tool widely used for biological applications and engineered Cas9s have increased discrimination against off-target cleavage compared with wild-type Streptococcus pyogenes (SpCas9) in vivo. To understand the basis for improved discrimination against off-target DNA containing important mismatches at the distal end of the guide RNA, we performed kinetic analyses on the high-fidelity (Cas9-HF1) and hyper-accurate (HypaCas9) engineered Cas9 variants. We show that DNA cleavage is impaired by more than 100- fold for the high-fidelity variants.

View Article and Find Full Text PDF

It was reported in 1995 that T7 and Taq DNA polymerases possess 3'-esterase activity, but without follow-up studies. Here we report that the 3'-esterase activity is intrinsic to the . 9°N DNA polymerase, and that it can be developed into a continuous method for DNA sequencing with dNTP analogs carrying a 3'-ester with a fluorophore.

View Article and Find Full Text PDF

Bacterial adaptive immune systems employ clustered regularly interspaced short palindromic repeats (CRISPR) along with their CRISPR-associated genes (Cas) to form CRISPR RNA (crRNA)-guided surveillance complexes, which target foreign nucleic acids for destruction. Cas9 is unique in that it is composed of a single polypeptide that utilizes both a crRNA and a trans-activating crRNA (tracrRNA) or a single guide RNA to create double-stranded breaks in sequences complementary to the RNA via the HNH and RuvC nuclease domains. Cas9 has become a revolutionary tool for gene-editing applications.

View Article and Find Full Text PDF

Methyltransferases play crucial roles in many cellular processes, and various regulatory mechanisms have evolved to control their activities. For methyltransferases involved in biosynthetic pathways, regulation via feedback inhibition is a commonly employed strategy to prevent excessive accumulation of the pathways' end products. To date, no biosynthetic methyltransferases have been characterized by X-ray crystallography in complex with their corresponding end product.

View Article and Find Full Text PDF

The mechanism of DNA polymerase (pol) fidelity is of fundamental importance in chemistry and biology. While high-fidelity pols have been well studied, much less is known about how some pols achieve medium or low fidelity with functional importance. Here we examine how human DNA polymerase λ (Pol λ) achieves medium fidelity by determining 12 crystal structures and performing pre-steady-state kinetic analyses.

View Article and Find Full Text PDF