Publications by authors named "Mu-Lin Chen"

Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the pathogenesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc+taurine (Tau), and (4) Alc+silymarin (Sil).

View Article and Find Full Text PDF

The design of high-affinity lectin ligands is critical for enhancing the inherently weak binding affinities of monomeric carbohydrates to their binding proteins. Glyco-gold nanoparticles (glyco-AuNPs) are promising multivalent glycan displays that can confer significantly improved functional affinity of glyco-AuNPs to proteins. Here, AuNPs are functionalized with several different carbohydrates to profile lectin affinities.

View Article and Find Full Text PDF

The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT.

View Article and Find Full Text PDF

We previously reported that Hibiscus sabdariffa polyphenol extracts (HPE) are beneficial for diabetic nephropathy. Since an epithelial to mesenchymal transition (EMT) is critical in renal fibrosis, the present study aimed to investigate whether HPE could prevent EMT of tubular cells. Treatment of HPE reduced angiotensin II receptors (AT)-1 and transforming growth factor β1 (TGF-β1) evoked by high glucose and recovered the increased vimentin and decreased E-cadherin.

View Article and Find Full Text PDF

A straightforward method for fabricating a stable and covalent carbohydrate microarray based on boronate formation between the hydroxyl groups of carbohydrate and boronic acid (BA) on the glass surface was used to identify carbohydrate-protein interactions.

View Article and Find Full Text PDF

A common approach towards developing immunoassays is to attach antibodies onto the surfaces of assay devices via a solid support. When directly adsorbed onto surfaces, however, antibodies generally adopt random orientations and therefore, often fail to exhibit their immunoaffinity. To preserve the antigen-binding activity of antibodies, there is an urgent need to develop specific and novel linking chemistries for attaching the antibodies to the solid surfaces in an oriented manner.

View Article and Find Full Text PDF

In an attempt to fabricate highly active immunoprobes for serum biomarker detection, we report a simple and effective method for site-specific and self-oriented immobilization of antibodies on magnetic nanoparticles (MNPs). Through boronate formation, the carbohydrate moiety within the constant domain, Fc, of the antibody can be specifically and covalently linked to a boronic acid-functionalized MNP (BA@MNP) without hindering the antigen binding domain, Fab. The performance was evaluated by immunoaffinity extraction of multiple serum antigens.

View Article and Find Full Text PDF