Publications by authors named "Mu-Lan He"

The biological function of interleukin-10 (IL-10) and the relationship between IL-10 secretion and the Toll-like receptor 2 (TLR2) expression levels in the central nervous system following hypoxic-ischemic brain damage (HIBD) are poorly understood. Here, we intend to elucidate the biological function and mechanism of IL-10 secretion following HIBD. In this study, we used a neonatal rat model of HIBD and found that rats injected with adeno-associated virus-IL-10-shRNA (short hairpin RNA) exhibited partially impaired learning and memory function compared to rats administered adeno-associated virus-control-shRNA.

View Article and Find Full Text PDF

Our previous study demonstrated that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts, including a large-conductance Ca(2+)-activated K(+) current (BKCa), a volume-sensitive chloride current (I(Cl.vol)), and voltage-gated sodium currents (I(Na)). The present study was designed to examine the possible involvement of these ion channels in proliferation of cultured human cardiac fibroblasts using approaches of cell proliferation assay, whole-cell patch voltage-clamp, siRNA and Western blot analysis.

View Article and Find Full Text PDF

Intracellular free Ca2+ (Ca(i)2+) is an important regulator of many cellular activities; however, Ca2+ signaling is not well studied in human preadipocytes. The purpose of the present study was to characterize Ca2+ signal pathways using a confocal scanning technique and RT-PCR. It was found that spontaneous Ca(i)2+ oscillations were observed in 12.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate is frequently released by cells and acts as an agonist for G protein-coupled P2Y receptors and ligand-gated P2X cationic channels in numerous tissues. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors. In the pituitary gland, adenosine 5'-triphosphate is released from the endings of magnocellular hypothalamic neurons and by anterior pituitary cells through pathway(s) that are still not well characterized.

View Article and Find Full Text PDF

Ion channels participate in regulation of cell proliferation. However, though preadipocyte (the progenitor of fat cell) is a type of highly proliferating cells, ion channel expression and their role in proliferation is not understood in human preadipocytes. The present study was designed to characterize ion channels using whole-cell patch clamp technique, RT-PCR, and Western blotting.

View Article and Find Full Text PDF

Hypothalamic and pituitary cells express G protein-coupled adenosine and P2Y receptors and cation-conducting P2X receptor-channels, suggesting that extracellular ATP and other nucleotides may function as autocrine and/or paracrine signaling factors in these cells. Consistent with this hypothesis, we show that cultured normal and immortalized pituitary and hypothalamic cells release ATP under resting conditions. RT-PCR analysis also revealed the presence of transcripts for ecto-nucleotidase eNTPDase 1-3 in these cells.

View Article and Find Full Text PDF

Purinergic P2X receptors are ion-conducting channels composed of three subunits, each having two transmembrane domains and intracellular amino (N) and carboxyl (C) termini. Although alternative splicing extensively modifies the C-terminal sequences of P2X subunits, the direct influence of such post-transcriptional modifications on receptor architecture and function remains poorly understood. In this study, we focused on mouse pituitary P2X2 receptors.

View Article and Find Full Text PDF

The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop.

View Article and Find Full Text PDF

The P2X receptors (P2XRs) are a family of ligand-gated channels activated by extracellular ATP through a sequence of conformational transitions between closed, open, and desensitized states. In this study, we examined the dependence of the activity of P2XRs on ectodomain structure and agonist potency. Experiments were done in human embryonic kidney 293 cells expressing rat P2X2aR, P2X2bR, and P2X3R, and chimeras having the V60-R180 or V60-F301 ectodomain sequences of P2X3R instead of the I66-H192 or I66-Y310 sequences of P2X2aR and P2X2bR.

View Article and Find Full Text PDF

Anterior pituitary cells express nucleotide-gated G protein-coupled P2 receptors (P2YRs) and cation-conducting channels (P2XRs). However, the identification of P2 receptors subtypes and their native ligands, and the distribution and function of these receptors within the secretory and non-secretory pituitary cells has been incompletely characterized. The focus in this study was on lactotroph subpopulation of cells.

View Article and Find Full Text PDF

Extracellular nucleotide-activated purinergic receptors (P2XRs) are a family of cation-permeable channels that conduct small cations, including Ca2+, leading to the depolarization of cells and subsequent stimulation of voltage-gated Ca2+ influx in excitable cells. Here, we studied the spatiotemporal characteristics of intracellular Ca2+ signaling and its dependence on current signaling in excitable mouse immortalized gonadotropin-releasing hormone-secreting cells (GT1) and nonexcitable human embryonic kidney cells (HEK-293) cells expressing wild-type and chimeric P2XRs. In both cell types, P2XR generated depolarizing currents during the sustained ATP stimulation, which desensitized in order (from rapidly desensitizing to nondesensitizing): P2X3R > P2X2b + X4R > P2X2bR > P2X2a + X4R > P2X4R > P2X2aR > P2X7R.

View Article and Find Full Text PDF

Purinergic receptors (P2XRs) activate and desensitize in response to the binding of extracellular nucleotides in a receptor- and ligand-specific manner, but the structural bases of their ligand preferences and channel kinetics have been incompletely characterized. Here we tested the hypothesis that affinity of agonists for binding domain accounts for a ligand-specific desensitization pattern. We generated chimeras using receptors with variable sensitivity to ATP in order: P2X(4)R > P2X(2a)R = P2X(2b)R P2X(7)R.

View Article and Find Full Text PDF

The wild-type P2X(2) purinergic receptor (P2X(2a)R) and its splice form lacking the intracellular Val(370)-Gln(438) C-terminal sequence (P2X(2b)R) respond to ATP stimulation with comparable EC(50) values and peak current/calcium responses but desensitize in a receptor-specific manner. P2X(2a)R desensitizes slowly and P2X(2b)R desensitizes rapidly. We studied the effects of different agonists, and of substituting the ectodomain, on the pattern of calcium signaling by P2X(2a)R and P2X(2b)R.

View Article and Find Full Text PDF

In excitable cells, receptor-induced Ca(2+) release from intracellular stores is usually accompanied by sustained depolarization of cells and facilitated voltage-gated Ca(2+) influx (VGCI). In quiescent pituitary lactotrophs, however, endothelin-1 (ET-1) induced rapid Ca(2+) release without triggering Ca(2+) influx. Furthermore, in spontaneously firing and depolarized lactotrophs, the Ca(2+)-mobilizing action of ET-1 was followed by inhibition of spontaneous VGCI caused by prolonged cell hyperpolarization and abolition of action potential-driven Ca(2+) influx.

View Article and Find Full Text PDF