Publications by authors named "Mu-Hsin Chen"

Insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is a major constraint on the global production of cruciferous crops. For effective management of insecticide resistance, it is necessary to develop a molecular detection tool for predicting insecticide resistance levels based on the mutation frequency of target sites. In this study, a susceptible strain (SHggt) of P.

View Article and Find Full Text PDF
Article Synopsis
  • This text discusses the development of lasers that utilize Bloch surface waves (BSWs) for potential applications in on-chip nanophotonics and optical devices.
  • The researchers created a laser based on a guided BSW mode using a specially designed gain-medium guiding structure, achieving long-range propagation and high-quality laser output.
  • The BSW lasers demonstrated a low lasing threshold of 6.7 μJ/mm and a narrow linewidth of 0.019 nm, indicating their sensitivity to environmental changes, which could be useful for ultra-sensitive devices.
View Article and Find Full Text PDF

Although chiral semiconductors have shown promising progress in direct circularly polarized light (CPL) detection and emission, they still face potential challenges. A chirality-switching mechanism or approach integrating two enantiomers is needed to discriminate the handedness of a given CPL; additionally, a large material volume is required for sufficient chiroptical interaction. These two requirements pose significant obstacles to the simplification and miniaturization of the devices.

View Article and Find Full Text PDF

Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications.

View Article and Find Full Text PDF

Solution-process perovskite quantum dots (QDs) are promising materials to be utilized in photovoltaics and photonics with their superior optical properties. Advancements in top-down nanofabrication for perovskite are thus important for practical photonic and plasmonic devices. However, different from the chemically synthesized nano/micro-structures that show high quality and low surface roughness, the perovskite QD thin film prepared by spin-coating or the drop-casting process shows a large roughness and inhomogeneity.

View Article and Find Full Text PDF

Perovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed.

View Article and Find Full Text PDF

Extensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique.

View Article and Find Full Text PDF

Purpose: Ultraviolet B (UVB) radiation from sunlight is a known risk factor for human corneal injury. The aim of the present study was to investigate the protective effects of green tea polyphenol epigallocatechin gallate (EGCG) on UVB radiation-induced corneal oxidative damage in male imprinting control region (ICR) mice.

Methods: Corneal oxidative damage was induced by exposure to UVB radiation at 560 μW/cm(2).

View Article and Find Full Text PDF