Publications by authors named "Mtei K"

Unlabelled: Heavy metals exist in the ecosystem both naturally and due to anthropogenic activities and as recalcitrant pollutants; they are non-biodegradable and cause acute and chronic diseases to human beings and many lifeforms. A statistical experimental approach was applied in this current study to optimize the detoxification of mercury [Hg(II)] from mono-component biosorption system by a novel hybrid granular activated carbon (biosorbent) prepared from maize plant residues. The analysis of variance by the application of central composite design shows that all the studied independent factors greatly influence Hg(II) removal efficiency and uptake capacity.

View Article and Find Full Text PDF

A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants.

View Article and Find Full Text PDF

Desorption and adsorbent regeneration are imperative factors that are required to be taken into account when designing the adsorption system. From the environmental, economic, and practical points of view, regeneration is necessary for evaluating the efficiency and sustainability of synthesized adsorbents. However, no study has investigated the optimization of arsenic species desorption from spent adsorbents and their regeneration ability for reuse as well as safe disposal.

View Article and Find Full Text PDF

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal.

View Article and Find Full Text PDF

The sequestration of heavy metals from multicomponent sorption media has become critical due to the noxious effects of heavy metals on the natural environment and subsequently on human health as well as all life forms. The abatement of heavy metals using bio-adsorbents is one of the efficient and affordable approaches for treating water and wastewater. Therefore, the interactive effect of arsenic [As(III)] ions on the sorption and desorption ability of mercury [Hg(II)] from a binary sorption system was conducted.

View Article and Find Full Text PDF

Three brands of NPK fertilizers that contain variable concentrations of natural radioactivity are commonly used in tobacco plantations in Kenya, Tanzania, and Uganda. Tobacco plants are known for hyper-accumulation of natural radionuclides, particularly U. This study investigated if the elevated radioactivity in phosphate fertilizers could enhance radioactivity in soils and tobacco plant leaves.

View Article and Find Full Text PDF

The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important.

View Article and Find Full Text PDF

Phosphate rock, pre-concentrated phosphate ore, is the primary raw material for the production of mineral phosphate fertilizer. Phosphate rock is among the fifth most mined materials on earth, and it is also mined and processed to fertilizers in East Africa. Phosphate ore can contain relevant heavy metal impurities such as toxic cadmium and radiotoxic uranium.

View Article and Find Full Text PDF

The presence of pharmaceuticals in surface water and wastewater poses a threat to public health and has significant effects on the ecosystem. Since most wastewater treatment plants are ineffective at removing molecules efficiently, some pharmaceuticals enter aquatic ecosystems, thus creating issues such as antibiotic resistance and toxicity. This review summarizes the methods used for the removal of ceftriaxone antibiotics from aquatic environments.

View Article and Find Full Text PDF

The disadvantages of conventional methods in water and wastewater management including the demand for high energy consumption, the creation of secondary toxic sludge, and operation cost are much too high for developing countries. However, adsorption using low-cost biosorbents is the most efficient non-conventional technique for heavy metals removal. The high adsorption capacities, cost-effectiveness, and the abundance of agricultural waste materials in nature are the important parameters that explain why these biosorbents are economical for heavy metals removal.

View Article and Find Full Text PDF

The existence of hazardous heavy metals in aquatic settings causes health risks to humans, prompting researchers to devise effective methods for removing these pollutants from drinking water and wastewater. To obtain optimum removal efficiencies and sorption capacities of the contaminants on the sorbent materials, it is normally necessary to optimize the purification technology to attain the optimum value of the independent process variables. This review discusses the most current advancements in using various adsorbents for heavy metal remediation, as well as the modeling and optimization of the adsorption process independent factors by response surface methodology.

View Article and Find Full Text PDF

Cassava linamarase is a hydrolyzing enzyme that belongs to a glycoside hydrolase family 1 (GH1). It is responsible for breaking down linamarin to toxic cyanide. The enzyme provides a defensive mechanism for plants against herbivores and has various applications in many fields.

View Article and Find Full Text PDF

Background: There are urgent calls for the transformation of agriculture and food systems to address human and planetary health issues. Nutrition-sensitive agriculture and agroecology promise interconnected solutions to these challenges, but evidence of their impact has been limited.

Objectives: In a cluster-randomized trial (NCT02761876), we examined whether a nutrition-sensitive agroecology intervention in rural Tanzania could improve children's dietary diversity.

View Article and Find Full Text PDF

Increased demand for monitoring and identification of novel and unknown fluorinated compounds (FCs) has demonstrated the need of sensitive fluorine-specific detectors for unknown FCs in both biological and environmental matrices. Inductively coupled plasma mass spectrometry (ICP-MS) is a promising technique for analysis of FCs and has been rated as the most powerful tool in analytical chemistry. However, direct determination of fluorine using this technique is challenged by high ionization potential of fluorine together with spectral and nonspectral interferences which affect the quality of results.

View Article and Find Full Text PDF

This study assessed fluoride levels in domestic water, commonly consumed food crops, cow's, and human milk. Samples of vegetables were collected from farmer's home gardens, green banana from local markets, maize flour, and domestic water from households, while cow's and human (breast) milk were obtained from cows and lactating mothers. Fluoride levels were determined by using a fluoride ion-selective electrode.

View Article and Find Full Text PDF

Background: The East African Rift Valley (EARV) area is characterized by an intense volcanic activity, which largely influences the nature of soils, ground and surface waters causing a transfer of fluoride from volcanic emissions to the environment. Field experiments were conducted in fluorine-contaminated areas of Ngarenanyuki (Arumeru district) in north Tanzania. In order to evaluate the potential fluoride exposure from diet and the related health risk for the local population, the content of fluoride in soil and plant tissues was assessed, focusing on the edible portions (leaves, fruits or seeds) of the main cultivated and consumed food crops in the area.

View Article and Find Full Text PDF

Temporal and spatial sediment dynamics in an East-African Rift Lake (Lake Manyara, Tanzania), and its river inputs, have been evaluated via a combination of sediment tracing and radioactive dating. Changes in sedimentation rates were assessed using radioactive dating of sediment cores in combination with geochemical profile analysis of allogenic and autogenic elements. Geochemical fingerprinting of riverine and lake sediment was integrated within a Bayesian mixing model framework, including spatial factors, to establish which tributary sources were the main contributors to recent lake sedimentation.

View Article and Find Full Text PDF

Increasing complexity in human-environment interactions at multiple watershed scales presents major challenges to sediment source apportionment data acquisition and analysis. Herein, we present a step-change in the application of Bayesian mixing models: Deconvolutional-MixSIAR (D-MIXSIAR) to underpin sustainable management of soil and sediment. This new mixing model approach allows users to directly account for the 'structural hierarchy' of a river basin in terms of sub-watershed distribution.

View Article and Find Full Text PDF

The aim of this study was to assess the seasonal effects on quantity and quality of fodder resources and associated utilization practices among smallholder dairy farmers in Western Usambara Highlands (WUHs) in Tanzania. The WUHs are among the major milk producing areas under smallholder dairy farming systems (SDFS) in Tanzania. Dry season fodder scarcity is a widespread problem affecting the East African SDFS and has been shown to contribute to over 40% reduction in milk yield.

View Article and Find Full Text PDF

Plants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms.

View Article and Find Full Text PDF