Publications by authors named "Mshtaq Ahmed"

Chloride-induced corrosion of steel rebars embedded in mortar was effectively controlled by blending of gallic acid in wet mixture. Mixing of optimized concentration of gallic acid (GA) inhibitor (0.125%) in mortars considerably increased the charge transfer resistance of embedded rebars (80.

View Article and Find Full Text PDF

It is found that mixture of 1,2,3 benzo triazole (BTAH) with polyethoxylated sorbitan monooleate, a non-ionic surface-active agent (NIS) effectively improves the properties of the cast concrete as well as significantly reduces the chloride induced corrosion of steel reinforced bars, when added in freshly prepared paste of mortar mixture. The addition of this mixture in the cast mortars is noted to reduce the water absorption in comparison to the control mortars cast using identical materials and under similar cast conditions. Electrochemical impedance spectroscopy and polarization studies of the rebars embedded in mortars and exposed in cement slurry have been performed to study the role of synergistic mixture on kinetics and mechanism of corrosion of rebars.

View Article and Find Full Text PDF

In this study, the efficacy of the combined effect of borate and silicate alkali metal salts added to mortars for controlling the chloride-induced uniform and localized corrosion of embedded steel rebars is examined. The individually added salts in mortars are found to have insignificant effects in terms of reducing the uniform corrosion rate and localized damage. However, their combination (0.

View Article and Find Full Text PDF

This paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.

View Article and Find Full Text PDF