Triphenyl phosphate (TPP) and polystyrene nanoplastics (PSNPs) are prevalent freshwater contaminants obtained mainly from food packaging, textiles and electronics. Algal extracellular polymeric substances (EPS), a part of natural organic matter, may influence these pollutants' behaviour and toxicity. The presence of EPS can enhance the aggregation of TPP-PSNP mixtures, and reduce the bioavailability, and thus the toxicity potential.
View Article and Find Full Text PDFBoron nanoparticles have numerous medical, industrial, and environmental applications as potential nanomaterials. Given the inevitable release of these particles in aquatic environments, they can combine with other pollutants like pharmaceuticals. Therefore, it is necessary to investigate their combined detrimental effects on freshwater biota.
View Article and Find Full Text PDFIn recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp.
View Article and Find Full Text PDFGFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp.
View Article and Find Full Text PDFThe possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (FeO NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect FeO NP transportation and behavior in soil and water systems to determine their possible environmental fate.
View Article and Find Full Text PDFThe degradation of organic pollutants present in domestic and industrial effluents is a matter of concern because of their high persistence and ecotoxicity. Recently, advanced oxidation processes (AOPs) are being emphasized for organic pollutant removal from effluents, as they have shown higher degradation efficiencies when compared to conventional activated sludge processes. Sulfate radical-based methods are some of the AOPs, mainly carried out using persulfate (PS) and peroxymonosulfate (PMS), which have gained attention due to the ease of sulfate radical generation and the effective degradation of organic molecules.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
November 2023
Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO), iron oxide (FeO), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO + FeO FeO + ZnO, and ZnO + SiO) and ternary (SiO + FeO + ZnO) combinations.
View Article and Find Full Text PDFPhthalic acid esters are emerging pollutants, commonly used as plasticizers that are categorized as hazardous endocrine-disrupting chemicals (EDCs). A rise in anthropogenic activities leads to an increase in phthalate concentration in the environment which leads to various adverse environmental effects and health issues in humans and other aquatic organisms. This paper gives an overview of the research related to phthalate ester contamination and degradation methods by conducting a bibliometric analysis with VOS Viewer.
View Article and Find Full Text PDFDue to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus.
View Article and Find Full Text PDFNano silica (nSiO), induces potential harmful effects on the living environment and human health. It is well established that SiO facilitates the co-transport of a variety of other contaminants, including heavy metals and pesticides. The current study focused on the systematic evaluation of the effects of multiple physicochemical parameters such as pH (5, 7, and 9), ionic strength (10, 50, and 100 mM), and humic acid (0.
View Article and Find Full Text PDFSilicon dioxide nanoparticles (nSiO) are extensively used in diverse fields and are inevitably released into the natural environment. Their overall aggregation behaviour in the environmental matrix can determine their fate and ecotoxicological effect on terrestrial and aquatic life. The current study systematically evaluates multiple parameters that can influence the stability of colloidal nSiO (47 nm) in the natural aquatic environment.
View Article and Find Full Text PDFThe objective of this study was to develop bimetallic core-shell Pd/Fe nanoparticles on the surface of aerobic microbial granules (Bio-Pd/Fe) and to evaluate their dye removal potential using a representative dye, methyl orange (MO). The aerobic microbial granules (1.5 ± 0.
View Article and Find Full Text PDFGold nanoparticles (GNPs) are widely used for medical purposes, both in diagnostics as well as drug delivery, and hence are prone to release and distribution in the environment. Thus, we have explored the effects of GNPs with two distinct surface capping (citrate and PVP), and three different sizes (16, 27, and 37 nm) at 0.01-, 0.
View Article and Find Full Text PDFThe impact of pH and ionic strength on the mobility (individual and co-transport) and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1-10 mM) and CaCl2 (0.
View Article and Find Full Text PDFThere is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (≤1ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells.
View Article and Find Full Text PDFThe Cr(VI) removal capability of Acinetobacter junii VITSUKMW2 isolated from the Sukinda chromite mine site was evaluated and enhanced using statistical design techniques. The removal capacity was evaluated at different pH values (5-11) and temperatures (30-40 degrees C) and with various carbon and nitrogen sources. Plackett- Burman design was used to select the operational parameters for bioremediation of Cr(VI).
View Article and Find Full Text PDFThe adsorptive removal of Cr(VI) by alginate beads containing Cr(VI)-adapted Acinetobacter junii, Escherichia coli and Bacillus subtilis in batch and continuous packed bed column reactors was investigated. Under optimized conditions (pH 3.0; contact time, 180 min; 30 °C; initial Cr(VI) concentration of 100 mg/L), 65.
View Article and Find Full Text PDFThe emergence of multidrug resistant varieties of Mycobacterium tuberculosis has led to a search for novel drug targets. We have performed an insilico comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen M. tuberculosis.
View Article and Find Full Text PDF