Publications by authors named "Mroginski M"

Article Synopsis
  • MitoNEET, an iron-sulphur protein in the mitochondrial outer membrane, is linked to the drug pioglitazone but its exact molecular function remains unclear.
  • Researchers identified a specific site for nitric oxide (NO) access to the mitoNEET's [2Fe-2S] cluster and found that both oxygen and pioglitazone can block this access.
  • This discovery suggests a role for mitoNEET in mitochondrial signal transduction related to hypoxia, revealing new insights into how [Fe-S] clusters may function in signaling processes in eukaryotic cells.
View Article and Find Full Text PDF

A profound understanding of protein structure and mechanism requires dedicated experimental and theoretical tools to elucidate electrostatic and hydrogen bonding interactions in proteins. In this work, we employed an approach to disentangle noncovalent and hydrogen-bonding electric field changes during the reaction cascade of a multidomain protein, i.e.

View Article and Find Full Text PDF

Electron transfer bifurcation enables biological systems to drive unfavourable (endergonic) electron transfer by coupling it to favourable (exergonic) transfer of a second electron. In electron transfer flavoproteins (ETFs), a domain-scale conformational change is believed to sever the favourable pathway after a single electron has used it, thereby preventing the energy dissipation that would accompany exergonic transfer of the second electron. To understand the conformation change that participates in turnover, we have deployed small-angle neutron scattering (SANS) and computational techniques to characterize the bifurcating ETF from (ETF).

View Article and Find Full Text PDF

[NiFe]-hydrogenases catalyze the reversible activation of H using a unique NiFe(CN)CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored.

View Article and Find Full Text PDF

Chitosan is a functional polymer with diverse applications in biomedicine, agriculture, water treatment, and beyond. Via derivatization of pristine chitosan, its functionality can be tailored to desired applications, e.g.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes.

View Article and Find Full Text PDF
Article Synopsis
  • Enniatins are mycotoxins that have antibacterial, antifungal, and antiviral properties, recently being explored for their potential as anticancer agents that target mitochondria.
  • Their cytotoxic effects are due to their unique structure that forms complexes with various cations, affecting membrane interactions.
  • Using advanced techniques, the study revealed that different cations (like Na, K, Li, etc.) influence how enniatin B interacts with membranes, impacting its effectiveness in targeting cancer cells.
View Article and Find Full Text PDF

Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks.

View Article and Find Full Text PDF

New variants of SARS-CoV-2 that can escape immune response continue to emerge. Consequently, there is an urgent demand to design small molecule therapeutics inhibiting viral entry to host cells to reduce infectivity rate. Despite numerous in silico and in situ studies, the structural requirement of designing viral-entry inhibitors effective against multiple variants of SARS-CoV-2 has yet to be described.

View Article and Find Full Text PDF

Bifurcating electron transferring flavoproteins (Bf-ETFs) tune chemically identical flavins to two contrasting roles. To understand how, we used hybrid quantum mechanical molecular mechanical calculations to characterize noncovalent interactions applied to each flavin by the protein. Our computations replicated the differences between the reactivities of the flavins: the electron transferring flavin (flavin) was calculated to stabilize anionic semiquinone (ASQ) as needed to execute its single-electron transfers, whereas the Bf flavin (flavin) was found to disfavor the ASQ state more than does free flavin and to be less susceptible to reduction.

View Article and Find Full Text PDF

Comprising at least a bipartite architecture, the large subunit of [NiFe]-hydrogenase harbors the catalytic nickel-iron site while the small subunit houses an array of electron-transferring Fe-S clusters. Recently, some [NiFe]-hydrogenase large subunits have been isolated showing an intact and redox active catalytic cofactor. In this computational study we have investigated one of these metalloproteins, namely the large subunit HoxG of the membrane-bound hydrogenase from (MBH), targeting its conformational and mechanical stability using molecular modelling and long all-atom Gaussian accelerated molecular dynamics (GaMD).

View Article and Find Full Text PDF

Photoisomerization is a fundamental process in several classes of photoreceptors. Phytochromes sense red and far-red light in their Pr and Pfr states, respectively. Upon light absorption, these states react via individual photoreactions to the other state.

View Article and Find Full Text PDF

The function of the recently isolated sulerythrin (SulE) has been investigated using a combination of structural and electronic analyses based on quantum mechanical calculations. In the SulE structure of Fushinobu et al. (2003), isolated from a strictly aerobic archaeon, , a dioxygen-containing species was tentatively included at the active site during crystallographic refinement although the substrate specificity of SulE remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Protein halogenation is a process that modifies proteins and is linked to aging, diseases, and cancer.
  • The study focuses on how halogenation affects the structure and dynamics of the FtsZ protein, which is important for cell division in bacteria, helping to understand its role in more complex living systems.
  • Findings reveal that halogenation alters the FtsZ protein's shape and functionality by changing surface charges and internal distances, which ultimately impacts its ability to bind GTP, providing insights that could assist in diagnosing related health issues.
View Article and Find Full Text PDF

Biological carbon dioxide (CO ) reduction is an important step by which organisms form valuable energy-richer molecules required for further metabolic processes. The Mo-dependent formate dehydrogenase (FDH) from Rhodobacter capsulatus catalyzes reversible formate oxidation to CO at a bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor. To elucidate potential substrate binding sites relevant for the mechanism, we studied herein the interaction with the inhibitory molecules azide and cyanate, which are isoelectronic to CO and charged as formate.

View Article and Find Full Text PDF

The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2.

View Article and Find Full Text PDF

Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes photoswitching between two states of different physiological activity, a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from ) together with the bathy-like phytochrome BphP from by resonance Raman and IR difference spectroscopy.

View Article and Find Full Text PDF

Phytochromes constitute a widespread photoreceptor family that typically interconverts between two photostates called Pr (red light–absorbing) and Pfr (far-red light–absorbing). The lack of full-length structures solved at the (near-)atomic level in both pure Pr and Pfr states leaves gaps in the structural mechanisms involved in the signal transmission pathways during the photoconversion. Here, we present the crystallographic structures of three versions from the plant pathogen virulence regulator BphP bacteriophytochrome, including two full-length proteins, in the Pr and Pfr states.

View Article and Find Full Text PDF

Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations.

View Article and Find Full Text PDF

Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance.

View Article and Find Full Text PDF

Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2.

View Article and Find Full Text PDF

Cytochrome oxidase (CO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary.

View Article and Find Full Text PDF

Since the emergence of SARS-CoV-2, little attention has been paid to the interplay between the interaction of virus and commensal microbiota. Here, we used molecular docking and dynamics simulations to study the interaction of some of the known metabolites and natural products (NPs) produced by commensal microbiota with the receptor binding domain (RBD) of the spike glycoprotein of SARS-CoV-2. The results predict that NPs of commensal microbiota such as bile acids and non-ribosomal peptides (NRPs), of which some are siderophores, bind to the wild-type RBD and interfere with its binding to the ACE2 receptor.

View Article and Find Full Text PDF