Publications by authors named "Mridul Mukherji"

The ten-eleven translocation (TET) isoforms (TET1-3) play critical roles in epigenetic transcription regulation. In addition, mutations in the TET2 gene are frequently detected in patients with glioma and myeloid malignancies. TET isoforms can oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, by iterative oxidation.

View Article and Find Full Text PDF
Article Synopsis
  • Cytosine methylation (5mC) is important for regulating gene expression during the development of organisms and is affected by enzymes known as TET dioxygenases, which facilitate the process of active demethylation.
  • TET2, a member of the TET family, converts 5mC into various modified forms, and mutations in TET2 are often found in certain blood cancers.
  • This study introduces a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to separate and quantify these modified cytosines, marking a significant advance in understanding their biological functions.
View Article and Find Full Text PDF

Loss-of-function TET2 mutations (TET2) are common in myeloid neoplasia. TET2, a DNA dioxygenase, requires 2-oxoglutarate and Fe(II) to oxidize 5-methylcytosine. TET2 thus result in hypermethylation and transcriptional repression.

View Article and Find Full Text PDF

The epigenetic transcription regulation mediated by 5-methylcytosine (5mC) has played a critical role in eukaryotic development. Demethylation of these epigenetic marks is accomplished by sequential oxidation by ten-eleven translocation dioxygenases (TET1-3), followed by the thymine-DNA glycosylase-dependent base excision repair. Inactivation of the TET2 gene due to genetic mutations or by other epigenetic mechanisms is associated with a poor prognosis in patients with diverse cancers, especially hematopoietic malignancies.

View Article and Find Full Text PDF

5-Methylcytosine within CpG islands in DNA plays a crucial role in epigenetic transcriptional regulation during metazoan development. Recently, it has been established that the Ten-Eleven Translocation (TET) family, Fe(II)- and 2-oxoglutarate (2OG/αKG)-dependent oxygenases initiate 5-methylcytosine demethylation by iterative oxidation reactions. Mutations in the TET2 gene are frequently detected in patients with myeloid malignancies.

View Article and Find Full Text PDF

Aberrant activation of the hypoxia inducible factor (HIF) pathway causing overexpression of angiogenic genes, like vascular endothelial growth factor (VEGF), is one of the underlying causes of ocular neovascularization (NV) and metastatic cancer. Consistently, along with surgical interventions, a number of anti-VEGF agents have been approved by FDA for the treatment of ocular neovascular diseases. These anti-VEGF agents, like ranibizumab/lucentis, have revolutionized the treatment in the past decade.

View Article and Find Full Text PDF

Pathological activation of the hypoxia-inducible-factor (HIF) pathway leading to expression of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF), is the fundamental cause of neovascularization in ocular ischemic diseases and cancers. We have shown that pure honokiol inhibits the HIF pathway and hypoxia-mediated expression of pro-angiogenic genes in a number of cancer and retinal pigment epithelial (RPE) cell lines. The crude extracts, containing honokiol, from Magnolia plants have been used for thousands of years in the traditional oriental medicine for a number of health benefits.

View Article and Find Full Text PDF

Background: Epigenetic modifications, particularly DNA methylation and posttranslational histone modifications regulate heritable changes in transcription without changes in the DNA sequence. Despite a number of studies showing clear links between environmental factors and DNA methylation, little is known about the effect of environmental factors on the recently identified histone lysine methylation. Since their identification numerous studies have establish critical role played by these enzymes in mammalian development.

View Article and Find Full Text PDF

Aberrant activation of the hypoxia inducible factor (HIF) pathway is the underlying cause of retinal neovascularization, one of the most common causes of blindness worldwide. The HIF pathway also plays critical roles during tumor angiogenesis and cancer stem cell transformation. We have recently shown that honokiol is a potent inhibitor of the HIF pathway in a number of cancer and retinal pigment epithelial cell lines.

View Article and Find Full Text PDF

Hemangioblastomas of the retina, central nervous system, and kidney are observed in patients with mutations in the von Hippel-Lindau (VHL) tumor suppressor gene. Mutations in the VHL lead to constitutive activation of hypoxia-inducible-factor (HIF) pathway. HIF-mediated expression of pro-angiogenic genes causes extensive pathological neovascularization in hemangioblastomas.

View Article and Find Full Text PDF

A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied.

View Article and Find Full Text PDF

Methylation of DNA at the carbon-5 position of cytosine plays crucial roles in the epigenetic transcriptional silencing during metazoan development. Recent identification of Ten-Eleven Translocation (TET)-family demethylases have added a new dimension to dynamic regulation of 5-methylcytosine (5mC), and thus, inheritable and somatic gene silencing. The interest in hematology was particularly stimulated by the recent discovery of TET2 mutations in myeloid malignancies which were proven to be leukemogenic in murine knockout models.

View Article and Find Full Text PDF

Hypoxia-inducible-factor (HIF)-mediated expression of pro-angiogenic genes under hypoxic conditions is the fundamental cause of pathological neovascularization in retinal ischemic diseases and cancers. Recent studies have shown that histone lysine demethylases (KDMs) play a key role in the amplification of HIF signaling and expression of pro-angiogenic genes. Thus, the inhibitors of the HIF pathway or KDMs can have profound therapeutic value for diseases caused by pathological neovascularization.

View Article and Find Full Text PDF

Hypoxia inducible factor (HIF) plays a critical role in cellular adaptation to hypoxia by regulating the expression of essential genes. Pathological activation of this pathway leads to the expression of pro-angiogenic factors during the neovascularization in cancer and retinal diseases. Little is known about the epigenetic regulations during HIF-mediated transcription and activation of pro-angiogenic genes in oxygen-dependent retinal diseases.

View Article and Find Full Text PDF

Penicillin-binding protein 2a (PBP2a), the molecular determinant for high-level β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA), is intrinsically resistant to most β-lactam antibiotics. The development and characterization of new inhibitors targeting PBP2a would benefit from an effective and convenient assay for inhibitor binding. This study was directed toward the development of a fluorescently detected β-lactam binding assay for PBP2a from MRSA.

View Article and Find Full Text PDF

Jumonji domain containing iron (II), 2-oxoglutarate (2OG)-dependent dioxygenases from Jmjd2 family demethylate trimethylated histone3-lysine 9 (H3-K9me3), and also H3-K9me2 and H3-K36me3, albeit at lower rates. Recently, we have identified the first non-histone substrates of JmjD2 demethylases. Here, we studied the substrate specificity of Jmjd2a-c demethylases using site-directed mutagenesis and novel non-histone substrates.

View Article and Find Full Text PDF

Our previous studies have shown two distinct disease patterns (rapid and normal onset of clinical symptoms) in morphine-dependent SHIV/SIV-inoculated rhesus macaques. We have also shown that control as well as 50% of morphine-dependent macaques (normal progressor) developed humoral and cellular immune responses whereas the other half of the morphine-dependent macaques (rapid progressor) did not develop antiviral immune responses after infection with SIV/SHIV. In the present study, we analyzed the association between cytokine production, immune response, and disease progression.

View Article and Find Full Text PDF

Recent studies have shown that some Jumonji domain containing proteins demethylate tri- and dimethylated histone lysines by catalyzing a dioxygenase reaction. Here we report the substrate specificity of Jumonji domain-2 family histone demethylases (JMJD2A-C). A candidate substrate-based approach demonstrated that in addition to its known substrate, trimethylated histone H3-lysine-9, JMJD2A-C demethylate trimethylated lysine containing peptides from WIZ, CDYL1, CSB and G9a proteins, all constituents of transcription repression complexes.

View Article and Find Full Text PDF

Overexpression of the ErbB2 receptor tyrosine kinase is common in human cancers and is associated with an increased level of metastasis. To better understand the cellular signaling networks activated by ErbB2, a phosphoproteomic analysis of tyrosine-phosphorylated proteins was carried out in ErbB2-overexpressing breast and ovarian cancer cell lines. A total of 153 phosphorylation sites were assigned on 78 proteins.

View Article and Find Full Text PDF

Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

A surprisingly fewer than expected number of genes in the human genome suggests that sophistication of its biologic system is, in part, due to complex regulation of protein activities. The activities of most cellular proteins are regulated by post-translational modifications. One of the most important post-translational modifications is reversible protein phosphorylation, which decorates more than 30% of the proteome and regulates signal transduction pathways under normal conditions as well as in disorders such as diabetes, neurodegenerative diseases, autoimmune diseases and several forms of cancers.

View Article and Find Full Text PDF

The mature form of phytanoyl-coenzyme A 2-hydroxylase (PAHX), a nonheme Fe(II)- and 2-oxoglutarate-dependent oxygenase, catalyzes the alpha-hydroxylation of phytanoyl-CoA within peroxisomes. Mutations in PAHX result in some forms of adult Refsum's disease. Unprocessed PAHX (pro-PAHX) contains an N-terminal peroxisomal targeting sequence that is cleaved to give mature PAHX (mat-PAHX).

View Article and Find Full Text PDF

Here, we report a generally applicable PEGylation methodology based on the site-specific incorporation of para-azidophenylalanine into proteins in yeast. The azido group was used in a mild [3+2] cycloaddition reaction with an alkyne derivatized PEG reagent to afford selectively PEGylated protein. This strategy should be useful for the generation of selectively PEGylated proteins for therapeutic applications.

View Article and Find Full Text PDF

Protein tyrosine phosphorylation cascades are difficult to analyze and are critical for cell signaling in higher eukaryotes. Methodology for profiling tyrosine phosphorylation, considered herein as the assignment of multiple protein tyrosine phosphorylation sites in single analyses, was reported recently (Salomon, A. R.

View Article and Find Full Text PDF