Publications by authors named "Mrasek K"

Background: Familial cases of adult acute myeloid leukemia (AML) with germline-mutated CCAAT/enhancer-binding protein-α (CEBPA) gene are a rare entity classified in World Health Organization (WHO) classification 2016. Most families reported in the literature show an autosomal dominant inheritance pattern consistent with a single-gene mutation.

Methods: Here we studied a Syrian family with four individuals suffering from AML for CEBPA gene mutations by Sanger sequencing.

View Article and Find Full Text PDF

Aims: Epidermal growth factor receptor (EGFR) is not only involved in carcinogenesis, but also in chemoresistance. We characterized U87.MGΔEGFR glioblastoma cells with constitutively active EGFR due to deletion at the ligand binding domain in terms of gene expression profiling and chromosomal aberrations.

View Article and Find Full Text PDF

TP53 (p53) is a pivotal player in tumor suppression with fifty percent of all invasive tumors displaying mutations in the TP53 gene. In the present study, we characterized colon cancer cells (HCT116 p53 ) with TP53 deletion, a sub-line derived from HCT116-p53  cells. RNA sequencing and network analyses were performed to identify novel drug resistance mechanisms.

View Article and Find Full Text PDF

A balanced pericentric inversion is normally without any clinical consequences for its carrier. However, there is a well-known risk of such inversions to lead to unbalanced offspring. Inversion-loop formation is the mechanism which may lead to duplication or deletion of the entire or parts of the inverted segment in the offspring.

View Article and Find Full Text PDF

Background: Copy number variants (CNVs) are the genetic bases for microdeletion/ microduplication syndromes (MMSs). Couples with an affected child and desire to have further children are routinely tested for a potential parental origin of a specific CNV either by molecular karyotyping or by two color fluorescence in situ hybridization (FISH), yet. In the latter case a critical region probe (CRP) is combined with a control probe for identification of the chromosome in question.

View Article and Find Full Text PDF

Isolated abnormalities in terminal regions of chromosomes 10q and 22q were formerly described in patients affected by neuropsychological impairment, abnormal facies, and heterogeneous structural abnormalities of the body. Chromosomes 10q and 22q harbor important genes that play a major role in CNS development, like DOCK1 and SHANK3, and in overall body growth, like FGFR2 and HTRA1. By using clinical, neuroradiological, neurophysiological, and genetic assessment, we studied 3 siblings affected by 2 different forms of very severe neuropsychological impairment with structural physical abnormalities, epilepsy, and body overgrowth.

View Article and Find Full Text PDF

We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH).

View Article and Find Full Text PDF
Article Synopsis
  • Fanconi anemia (FA) is a genetic disorder that leads to chromosomal instability, marked by frequent chromosomal breakages and accelerated telomere shortening, which the study investigates through detailed molecular-cytogenetic analysis of FA-D2 patients' lymphocytes.
  • The study discovered that chromosomal breakpoints in these patients often overlap with common fragile sites, and their patterns vary based on the severity of the disease.
  • Additionally, the findings suggest that certain telomere fusions and radial figures, which arise from critically shortened telomeres, increase as the disease progresses and might serve as predictive indicators for disease advancement.
View Article and Find Full Text PDF

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase.

View Article and Find Full Text PDF

Comparative cytogenetic analysis in New World Monkeys (NWMs) using human multicolor banding (MCB) probe sets were not previously done. Here we report on an MCB based FISH-banding study complemented with selected locus-specific and heterochromatin specific probes in four NWMs and one Old World Monkey (OWM) species, i.e.

View Article and Find Full Text PDF

Gibbon species (Hylobatidae) impress with an unusually high number of numerical and structural chromosomal changes within the family itself as well as compared to other Hominoidea including humans. In former studies applying molecular cytogenetic methods, 86 evolutionary conserved breakpoints (ECBs) were reported in the white-handed gibbon (Hylobates lar, HLA) with respect to the human genome. To analyze those ECBs in more detail and also to achieve a better understanding of the fast karyotype evolution in Hylobatidae, molecular data for these regions are indispensably necessary.

View Article and Find Full Text PDF

Genomic instability tends to occur at specific genomic regions known as common fragile sites (FS). FS are evolutionarily conserved and generally involve late replicating regions with AT-rich sequences. The possible correlation between some FS and cancer-related breakpoints emphasizes on the importance of understanding the mechanisms of chromosomal instability at these sites.

View Article and Find Full Text PDF

Purpose: Liver metastases are the major cause of cancer-related death in colorectal cancer patients with a tendency to recur in over 50 % of the cases even after curatively intended surgery. Prognosis after liver resection, however, can neither be based on macroscopic or light microscopic evaluation of the metastases nor on clinical data alone. This is a pilot study in order to determine a potential influence of chromosomal aberrations on overall survival and relapse rate after curative liver resection.

View Article and Find Full Text PDF

Objectives: To test the hypothesis that mutations of SYCP3 encoding synaptonemal complex protein 3, result in increased frequency of aneuploidies in humans.

Methods: Mutation analysis of the PCR-amplified 8 coding exons and exon-intron boundaries of the SYCP3 gene was done by direct sequencing of DNA isolated from 35 aneuploid fetuses of women having a potentially increased likelihood for an underlying genetic predisposition for chromosomal non-disjunction.

Results: Based on the results of conventional karyotyping, the 35 aneuploid fetuses of 33 women were divided into separate groups: 9 aneuploid conceptuses of couples with recurrent aneuploid conceptions (4 of the women 35 years or younger), 12 conceptuses with double/multiple aneuploidies (5 of the women 35 years or younger), and 14 conceptuses with single aneuploidies of women younger than 35 years (8 trisomies and 6 monosomies).

View Article and Find Full Text PDF

Multicolor FISH (mFISH) assays are currently indispensable for a precise description of derivative chromosomes. Routine application of such techniques on human chromosomes started in 1996 with the simultaneous use of all 24 human whole-chromosome painting probes in multiplex-FISH and spectral karyotyping. Since then, multiple approaches for chromosomal differentiation based on multicolor-FISH (MFISH) assays have been developed.

View Article and Find Full Text PDF

Somatic mosaicism is present in slightly more than 50% of small supernumerary marker chromosome (sSMC) carriers. Interestingly, non-acrocentric derived sSMC show mosaicism much more frequently than acrocentric ones. sSMC can be present in different mosaic rates, which may go below 5% of the studied cells.

View Article and Find Full Text PDF

Concurrent emergence of nephroblastoma (Wilms Tumor; WT) and neuroblastoma (NB) is rare and mostly observed in patients with severe subtypes of Fanconi anemia (FA) with or without VACTER-L association (VL). We investigated the hypothesis that early consequences of genomic instability result in shared regions with copy number variation in different precursor cells that originate distinct embryonal tumors. We observed a newborn girl with FA and VL (aplasia of the thumbs, cloacal atresia (urogenital sinus), tethered cord at L3/L4, muscular ventricular septum defect, and horseshoe-kidney with a single ureter) who simultaneously acquired an epithelial-type WT in the left portion of the kidney and a poorly differentiated adrenal NB in infancy.

View Article and Find Full Text PDF

Genomic instability, a hallmark of cancer, occurs preferentially at specific genomic regions known as common fragile sites (CFSs). CFSs are evolutionarily conserved and late replicating regions with AT-rich sequences, and CFS instability is correlated with cancer. In the last decade, much progress has been made toward understanding the mechanisms of chromosomal instability at CFSs.

View Article and Find Full Text PDF

The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH) and multiplex fluorescence in situ hybridization (M-FISH) techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives.

View Article and Find Full Text PDF

Results from the analysis of copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitor cell lines (hiPSC and hESC-derived NPC) are presented. Two different types of CNVs were detected: a) CNVs inherited from the original source of pluripotent cells (hESC and hiPSC) and b) CNVs detected either in the original source of pluripotent cells or in the derived NPC cell lines but not in both at the same time. Our data suggest that submicroscopic chromosomal changes happened during culture and manipulation of cells and those differentiation procedures could result in gains and losses of genomic regions in pluripotent cell-derived neuroprogenitors.

View Article and Find Full Text PDF

Background: Recently, array-comparative genomic hybridization (aCGH) platforms have significantly improved the resolution of chromosomal analysis allowing the identification of genomic copy number gains and losses smaller than 5 Mb. Here we report on a young man with unexplained severe mental retardation, autism spectrum disorder, congenital malformations comprising hypospadia and omphalocele, and episodes of high blood pressure. An ~ 6 Mb interstitial deletion that includes the causative genes is identified by oligonucleotide-based aCGH.

View Article and Find Full Text PDF

Here a new fluorescence in situ hybridization (FISH-) based probe set is presented and its possible applications are highlighted in 34 exemplary clinical cases. The so-called pericentric-ladder-FISH (PCL-FISH) probe set enables a characterization of chromosomal breakpoints especially in small supernumerary marker chromosomes (sSMC), but can also be applied successfully in large inborn or acquired derivative chromosomes. PCL-FISH was established as 24 different chromosome-specific probe sets and can be used in two- up multicolor-FISH approaches.

View Article and Find Full Text PDF

The widespread use of whole genome analysis based on array comparative genomic hybridization in diagnostics and research has led to a continuously growing number of microdeletion and microduplication syndromes (MMSs) connected to certain phenotypes. These MMSs also include increasing instances in which the critical region can be reciprocally deleted or duplicated. This review catalogues the currently known MMSs and the corresponding critical regions including phenotypic consequences.

View Article and Find Full Text PDF