Monolayer boron nanosheet, commonly known as borophene, has garnered significant attention in recent years due to its unique structural, electronic, mechanical, and thermal properties. This review paper provides a comprehensive overview of the advancements in the synthetic strategies, tunable properties, and prospective applications of borophene, specifically focusing on its potential in energy storage devices. The review begins by discussing the various synthesis techniques for borophene, including molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and chemical methods, such as ultrasonic exfoliation and thermal decomposition of boron-containing precursors.
View Article and Find Full Text PDFThe biological treatment process is responsible for removing organic and inorganic matter in wastewater. This process relies heavily on microorganisms to successfully remove organic and inorganic matter. The aim of the study was to model biomass growth in the biological treatment process.
View Article and Find Full Text PDFThe biological treatment process (BTP) is responsible for removing chemical oxygen demand (COD) and ammonia using microorganisms present in wastewater. The BTP consumes large quantities of energy due to the transfer of oxygen using air pumps/blowers. Energy consumption in the BTP is due to low solubility of oxygen, which results in low aeration efficiency (AE).
View Article and Find Full Text PDF