Publications by authors named "Moztarzadeh Fathollah"

Alginate hydrogels are commonly used in wound care due to their ability to maintain a moist environment, absorb fluids, and aid wound healing. However, their stability and mechanical properties can sometimes limit their effectiveness. This study explores a new approach by creating a dual network system of oxidized alginate and gelatin hydrogel crosslinked with polydopamine in a single step, with the goal of improving the mechanical properties of these hydrogels.

View Article and Find Full Text PDF

Bioactive glasses are highly reactive surface materials synthesized by melting or sol-gel techniques. In this study, mesoporous bioactive glass-ceramics doped with different amounts of vanadium and iron ((60-( + )) SiO-36CaO-4PO-VO-FeO, and between 0, 5 and, 10 mole%) were synthesized using a sol-gel method. Then, their effects on particle morphology and the biomineralization process were examined in simulated body fluid (SBF).

View Article and Find Full Text PDF

The recent outbreak of Coronavirus Disease 2019 (COVID-19) calls for rapid mobilization of scientists to probe and explore solutions to this deadly disease. A limited understanding of the high transmissibility of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) relative to other coronavirus strains guides a deeper investigation into the virus/receptor interactions. The cutting-edge studies in thermodynamic and kinetic properties of interactions such as protein-protein interplays have been reviewed in many modeling and analysis studies.

View Article and Find Full Text PDF

The controlled delivery of the bone morphogenetic protein-2 (BMP-2) with tracking ability would overcome most of the side effects linked to the burst release and uncontrolled delivery of this growth factor for bone regeneration. Herein, BMP-2-conjugated carbon dots (CDs) was used as noninvasive detection platforms to deliver BMP-2 for therapeutic applications where osteogenesis and bioimaging are both required. With this in mind, the present work aimed to develop a controlled BMP-2-CDs release system using composite scaffolds containing BMP-2-CDs loaded pectin microparticles, which had been optimized for bone regeneration.

View Article and Find Full Text PDF

Hypoxia, the result of disrupted vasculature, can be categorized in the main limiting factors for fracture healing. A lack of oxygen can cause cell apoptosis, tissue necrosis, and late tissue healing. Remedying hypoxia by supplying additional oxygen will majorly accelerate bone healing.

View Article and Find Full Text PDF

Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells.

View Article and Find Full Text PDF

A novel SARS-like coronavirus (severe acute respiratory syndrome-related coronavirus-2, SARS-CoV-2) outbreak has recently become a worldwide pandemic. Researchers from various disciplinary backgrounds (social to natural science, health and medicine, etc.) have studied different aspects of the pandemic.

View Article and Find Full Text PDF

Nasal administration is a form of systemic administration in which drugs are insufflated through the nasal cavity. Steroids, nicotine replacement, antimigraine drugs, and peptide drugs are examples of the available systematically active drugs as nasal sprays. For diabetic patients who need to use insulin daily, the nasal pathway can be used as an alternative to subcutaneous injection.

View Article and Find Full Text PDF

Past researches on bone regeneration field have shown the positive impacts of the presence of Zinc and Magnesium ions in the bioactive glasses composition. However, there is no dedicated work on the effect of the aforementioned bio-glass on the polymer matrix composites. The key idea of the approach is to improve antibacterial efficacy, biological activity and mechanical properties of the bone composite scaffolds by incorporating bioactive glasses containing Zinc and Magnesium into alginate networks.

View Article and Find Full Text PDF

The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea.

View Article and Find Full Text PDF

Neuroregeneration strategies involve multiple factors to stimulate nerve regeneration. Neural support with chemical and physical cues to optimize neural growth and replacing the lesion neuron and axons are crucial for designing neural scaffolds, which is a promising treatment approach. In this study, polypyrrole polymerization and its functionalization at the interface developed by glycine and gelatin for further optimization of cellular response.

View Article and Find Full Text PDF

In this paper, nanofibers containing poly(ε-caprolactone) (PCL), chitosan and polypyrrole (PPy) were fabricated using electrospinning to combine advantages of electrospun nanofibers topography with versatile advantages of chitosan and PPy. Various compositions of the PCL/chitosan/PPy polymeric scaffolds were fabricated by electrospinning and were analyzed for their surface topography, hydrophilicity and bioactivity. The results illustrated that chitosan in the scaffold imposed significant advancement in the hydrophilicity of the scaffold as confirmed by a decrease in contact angle up to 66% (123 ± 2.

View Article and Find Full Text PDF

Tissue engineering scaffolds with oxygen generating elements have shown to be able to increase the level of oxygen and cell survivability in specific conditions. In this study, biphasic calcium phosphate (BCP) scaffolds with the composition of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (β-TCP), which have shown a great potential for bone tissue engineering applications, were fabricated by a direct-write assembly (robocasting) technique. Then, the three-dimensional (3D)-printed scaffolds were coated with different ratios of an oxygen releasing agent, calcium peroxide (CPO), which encapsulated within a polycaprolactone (PCL) matrix through dip-coating, and used for in situ production of oxygen in the implanted sites.

View Article and Find Full Text PDF

Electroactive scaffolds containing conductive polymers can promote tissue repair and regeneration. However, these polymers are non-degradable and cannot be removed from body. To overcome this limitation of conductive polymers, we developed a novel injectable electroactive hydrogel containing pyrrole oligomers which possessed the unique properties of being both electrically conductive and biodegradable.

View Article and Find Full Text PDF

Development of a new class of multifunctional ultrasound-responsive smart nanocarriers that combine therapeutic properties with diagnostic imaging has gained great attention in recent years. Here, we describe the results of ultrasonic nanotherapy of breast cancer using novel alginate-stabilized perfluorohexane nanodroplets. Doxorubicin (Dox)-loaded multifunctional nanodroplets (Dox-NDs) were synthesized via nanoemulsion process and evaluated in vitro and in vivo with focus on cytotoxicity, hemolytic activity, biodistribution, biosafety, and antitumor activity.

View Article and Find Full Text PDF

Ultrasound-responsive nanodroplets are a class of new emerging smart drug delivery systems which provide image-guided nano-therapy of various diseases, especially cancers. Here, we developed multifunctional smart curcumin-loaded chitosan/perfluorohexane nanodroplets for contrast-ultrasound imaging and on-demand drug delivery. The nanodroplets were synthesized via nanoemulsion process.

View Article and Find Full Text PDF

Ultrasound-responsive perfluorocarbon nanoemulsions are a class of new multifunctional smart nanocarriers which combine diagnostic properties with therapeutic properties and release their drug payload in a controlled manner in response to ultrasound. Therefore, combination therapy using chemotherapeutic and chemosensitizing agents co-entrapped in these nanocarriers seems beneficial for cancer treatment. In the present study, multifunctional smart alginate/perfluorohexane nanodroplets were developed for co-delivery of doxorubicin and curcumin (a strong chemosensitizer).

View Article and Find Full Text PDF

Aim: The corresponding proteins are important for network mapping since the interaction analysis can provide a new interpretation about disease underlying mechanisms as the aim of this study.

Backgroud: Nonalcoholic steatohepatitis (NASH) is one of the main causes of liver disease in the world. It has been known with many susceptible proteins that play essential role in its pathogenesis.

View Article and Find Full Text PDF

A major limitation in current tissue engineering scaffolds is that some of the most important characteristics of the intended tissue are ignored. As piezoelectricity and high mechanical strength are two of the most important characteristics of the bone tissue, carbon nanotubes are getting a lot of attention as a bone tissue scaffold component in recent years. In the present study, composite scaffolds comprised of functionalized Multiwalled Carbon Nanotubes (f-MWCNT), medium molecular weight chitosan and β-Glycerophosphate were fabricated and characterized.

View Article and Find Full Text PDF

SiO-CaO-PO based bioglass (BG) systems constitute a group of materials that have wide applications in bone implants. Chitosan (Cn) is a biocompatible and osteoconductive natural polymer that can promote wound healing. In this study, bioactivity of chitosan/bioglass (CnB) composites as minimally invasive bone regenerative materials was assessed both in vitro and in vivo.

View Article and Find Full Text PDF

Perfluorocarbon nanoemulsions are a new class of multifunctional stimuli-responsive nanocarriers which combine the properties of passive-targeted drug carriers, ultrasound imaging contrast agents, and ultrasound-responsive drug delivery systems. Doxorubicin-loaded alginate stabilized perflourohexane (PFH) nanodroplets were synthesized via nanoemulsion preparation method and their ultrasound responsivity, imaging, and therapeutic properties were studied. Doxorubicin was loaded into the nanodroplets (39.

View Article and Find Full Text PDF

In this research, the three dimensional porous scaffolds made of a polycaprolactone (PCL) microsphere/TiO nanotube (TNT) composite was fabricated and evaluated for potential bone substitute applications. We used a microsphere sintering method to produce three dimensional PCL microsphere/TNT composite scaffolds. The mechanical properties of composite scaffolds were regulated by varying parameters, such as sintering time, microsphere diameter range size and PCL/TNT ratio.

View Article and Find Full Text PDF

Given the large differences in nervous tissue and other tissues of the human body and its unique features, such as poor and/or lack of repair, there are many challenges in the repair process of this tissue. Tissue engineering is one of the most effective approaches to repair neural damages. Scaffolds made from electrospun fibers have special potential in cell adhesion, function and cell proliferation.

View Article and Find Full Text PDF

Millions of people around the world become blind due to losing a part of the retina cells. In tissue engineering field one way to address this issue is to develop a retina tissue by scaffolds based on structure and signals received These scaffolds can play an essential role in repair and reformation of the damaged retina tissue. Here, SrAl2O4: Eu(2+), Dy(3+) nanophosphor were prepared by sol-gel method and then coated with PEG to become biocompatible.

View Article and Find Full Text PDF

In the present study the effect of process (homogenization speed) and formulation (polymer-alginate-concentration, surfactant concentration, drug amount, perfluorohexane volume fraction and co-surfactant inclusion) variables on particle size, entrapment efficiency, and drug release kinetics of doxorubicin-loaded alginate stabilized perfluorohexane nanodroplets were evaluated. Particle size and doxorubicin entrapment efficiency were highly affected by formulation and process variables. Increase in homogenization speed resulted in significant decrease in particle size and increase in entrapment efficiency.

View Article and Find Full Text PDF