Publications by authors named "Mozhayskaya I"

Peroxysome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α; encoded by the gene PPARGC1A in humans) is a crucial component in training-induced muscle adaptation because it is a co-activator of transcriptional factors that control gene expression in coordinated response to exercise. It has been suggested that a Gly482Ser substitution in PPARGC1A has functional relevance in the context of human disorders and athletic performance. To test this hypothesis, we examined the genotype distribution of PPARGC1A Gly482Ser in a group of Polish athletes and confirmed the results obtained in a replication study of Russian athletes.

View Article and Find Full Text PDF

Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption.

View Article and Find Full Text PDF

The distribution of PPARG gene allele frequencies (Pro/Ala polymorphism) was studied in sportsmen specialized in speed and force athletics. A relationship between genotypes and human muscle transverse section area was evaluated. The PPARG Ala allele was significantly more incident in athletes than in controls, the incidence increasing with higher athletic qualification.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor alpha (PPARalpha) regulates genes responsible for skeletal and heart muscle fatty acid oxidation. Previous studies have shown that the PPARalpha intron 7 G/C polymorphism was associated with left ventricular growth in response to exercise. We speculated that GG homozygotes should be more prevalent within a group of endurance-oriented athletes, have normal fatty acid metabolism, and increased percentages of slow-twitch fibers.

View Article and Find Full Text PDF