Publications by authors named "Mozer A"

Illegal wildlife trade is a growing problem internationally. Poaching of animals not only leads to the extinction of populations and species but also has serious consequences for ecosystems and economies. This study introduces a molecular marker system that authorities can use to detect and substantiate wildlife trafficking.

View Article and Find Full Text PDF

We confirm fast regeneration kinetics between copper complexes and oxidized organic dyes and the major contribution of electronic coupling (). The highest efficiency of dye-sensitized TiO solar cells has been shown by employing Cu complex redox couples. Various groups have reported a fast regeneration rate of oxidized dyes by Cu complexes giving a low driving force attributed to low reorganization energy (λ), but the effect of has not been evaluated.

View Article and Find Full Text PDF

Metal complexes are often transformed to metal complex-derived catalysts during electrochemical CO reduction, enhancing the catalytic performance of CO reduction or changing product selectivity. To date, it has not been investigated whether metal-complex derived catalysts also enhance the decomposition of the solvent/electrolyte components as compared to an uncoated electrode. Here, we tested the electrochemical stability of five organic solvent-based electrolytes with and without a Cu complex-derived catalyst on carbon paper in an inert atmosphere.

View Article and Find Full Text PDF

Cu complexes facilitate the reduction of CO to valuable chemicals. The catalytic conversion likely involves the binding of CO and/or reduction intermediates to Cu, which in turn could be influenced by the electron density on the Cu ion. Herein we investigated whether modulating the redox potential of Cu complexes by changing their ligand structures influenced their CO reduction performance significantly.

View Article and Find Full Text PDF

Alkyl group wrapped donor-acceptor-donor (D-A-D) based unsymmetrical squaraine dyes , , and were used to evaluate the effect of sensitizing solvents on dye-sensitized solar cell (DSSC) efficiency. A drastic change in DSSC efficiency was observed when the photo-anodes were sensitized in acetonitrile (bad solvent when considering dye solubility) and chloroform (good solvent) with an Iodolyte (I/I) electrolyte. The DSSC device sensitized with squaraine dyes in acetonitrile showed better photovoltaic performance with enhanced photocurrent generation and photovoltage compared to the device sensitized in chloroform.

View Article and Find Full Text PDF

The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-:2',3'-]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl thiazolo 5,4- thiazole)-2,5diyl] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using μs-TAS, we have shown that the trap-limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant.

View Article and Find Full Text PDF

Fast electron transfer (ET) between surface-bound dye molecules and electron donor molecules dissolved in electrolytes with simultaneous reduction in recombination rates are crucial to improve the photon-to-electron conversion efficiency of photo-electrochemical technologies. Here, the electron transfer characteristics of a new dye molecule PX47 with only two alkyl chains placed in the anti configuration of the π-conjugated quarterthiophene backbone is studied. It is anticipated that the appropriate free space between the alkyl chains allowed the approach of the Co(c1-bpy) redox mediator to near the backbone of the dye anchored to a TiO electrode even at complete coverage of the TiO surface, thereby enhancing electronic coupling.

View Article and Find Full Text PDF

Aneurysms of the left atrial appendage (LAA) are rare entities that often require surgical intervention. We demonstrate multimodality imaging features of a giant LAA aneurysm, with a focus on 3-dimensional blood flow dynamics by using 4-dimensional-flow cardiac magnetic resonance. ().

View Article and Find Full Text PDF

There is growing interest in the development of novel materials and devices capable of ionizing radiation detection for medical applications. Organic semiconductors are promising candidates to meet the demands of modern detectors, such as low manufacturing costs, mechanical flexibility, and a response to radiation equivalent to human tissue. However, organic semiconductors have typically been employed in applications that convert low energy photons into high current densities, for example, solar cells and LEDs, and thus existing design rules must be re-explored for ionizing radiation detection where high energy photons are converted into typically much lower current densities.

View Article and Find Full Text PDF

The reliable characterization of the photoelectrochemical (PEC) performance of unstable photoelectrodes, often the simplest devices used as a baseline, is a huge challenge. By performing a correlation analysis of more than 100 parameters of CuO photocathodes electrodeposited under the same conditions, we discovered a strong positive correlation ( = 0.866) between the photocurrent in argon and the deposition current peak magnitude during electrodeposition, while a strong negative correlation ( = -0.

View Article and Find Full Text PDF

Dye regeneration lifetimes of a combination of dyes and redox mediators were determined by two transient absorption (TA) spectrometers with 0.5 ns (sub-ns) and 6 ns (ns) time resolutions to elucidate the impact of insufficient time resolution on the measurements of dye regeneration kinetics in dye-sensitised semiconductor electrodes. Due to the disordered nature of the dye-sensitised electrodes, the dye regeneration lifetime is often characterised by half-decay time (τ1/2) of the initial signal magnitude.

View Article and Find Full Text PDF

To meet various requirements for electron transfer (ET) at the substrate/electrolyte interface, mixed redox couples assigned to different functions have been applied. While in all studies the mixed redox species had different redox potentials, such redox systems inherently lose energy by ET between the species. We report interfacial ET kinetics employing mixed-ligand electrolytes based on Co complexes with mixtures of dimethyl- and dinonyl-substituted bipyridyl (bpy) ligands with the same redox potential.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is a global pandemic that primarily affects the respiratory system, but can also lead to serious cardiac complications, resulting in worse patient outcomes.
  • A case study of a 56-year-old male reveals his severe heart condition, known as fulminant myocarditis, leading to cardiogenic shock due to COVID-19.
  • The discussion covers the multidisciplinary approach to treatment, the mechanisms of heart injury related to the virus, and highlights the importance of understanding each patient’s specific condition for effective care.
View Article and Find Full Text PDF

Interfacial layers are frequently used in organic solar cells performing various functions, including blocking surface recombination, improving selectivity of charge carrier extraction, modification of the work function of the contact materials, and enhancing light absorption within the photoactive layer through an optical cavity effect. The aim of this work is to investigate the origin of performance enhancement of bulk heterojunction solar cells using various electron and hole interfacial layers, with a particular focus on separating the contributions of work function modification and reduced recombination to the improvement of the open circuit voltage ( V). Solar cells using poly[ N-9'-hepta-decanyl-2,7-carbazole- alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]:[6,6]-phenyl C-butyric acid methyl ester (1:4) active layers were prepared with a combination of polymeric, metal oxide, and polyelectrolyte electron and/or hole interfacial layers.

View Article and Find Full Text PDF

Bochdalek hernia is a congenital diaphragmatic hernia that presents rarely in adulthood. Because of the paucity of cases, no standard repair technique has been identified. Here we present two cases of robotic, thoracoscopic repair of this rare hernia defect.

View Article and Find Full Text PDF

Introduction: Laparoscopic resection of liver malignancies is gaining acceptance. Besides the advantages of minimally-invasive techniques, publications so far show no oncologic compromise of laparoscopy.

Aim: Our aim was to compare the results of our first fifty laparoscopic minor liver resections with traditional open procedures.

View Article and Find Full Text PDF

Sinapine is the main secondary metabolite present in rapeseed pomace (RSP) with its concentration being dependent on rapeseed processing, growing conditions, extraction parameters and the country of origin. Here we report, the concentration of sinapine from an extract of defatted RSP harvested in the North East of Scotland. Using liquid chromatography tandem mass spectrometry, the most abundant phenolic compound in the RSP extract was, as expected, sinapine (109.

View Article and Find Full Text PDF

The strategies to enhance electron transfer rates between redox-active, light-harvesting molecules attached to semiconductor surfaces and redox mediators in solution by modifying molecular structure are not fully investigated yet. Therefore, the design of molecules with controlled electron transfer rates remains a challenge. The aims of this work are to quantify the effect of long alkyl chain substitution on the electron transfer from cobalt(II/III) tris(2,2'-bipyridine) to organic molecules containing carbazole and thiophene and to demonstrate that alkyl chains can be used to enhance electron transfer between donor-acceptor pairs.

View Article and Find Full Text PDF

Increasing prevalence of mentally ill and handicapped populations requiring surgical thoracic interventions has brought to light their worse associated morbidity and mortality. Baseline functional status, caretaker environment, and mental limitations in day to day life have an impact in the short and long term from these interventions. Aggressive perioperative care, multispecialty approach, technical aspects, palliative procedures, and ethical considerations all play a part in improving outcomes.

View Article and Find Full Text PDF

This work presents a study on a capacitively coupled contactless conductivity detector (C4D) for micron-sized fibers. Following a previous report on the qualitative application of C4D for fibers, the present study provides a thorough analysis of the signal response to fiber conductivity. Using reduced graphene oxide (RGO) fibers, the detector response as a function of fiber length, cross-sectional area and resistance has been investigated.

View Article and Find Full Text PDF

Purpose: Optimal timing of surgery for acute diverticulitis remains unclear. A non-operative approach followed by elective surgery 6-week post-resolution is favored. However, a subset of patients fail on the non-operative management during index admission.

View Article and Find Full Text PDF

Microplastics are found in marine and freshwater environments; however, their specific sources are not yet well understood. Understanding sources will be of key importance in efforts to reduce emissions into the environment. We examined the emissions of microfibers from domestic washing of a new microfiber polyester fleece textile.

View Article and Find Full Text PDF

Reduction kinetics of oxidized dyes absorbed on semiconductor surfaces and immersed in redox active electrolytes has been mainly modeled based on the free energy difference between the oxidation potential of the dye and the redox potential of the electrolyte. Only a few mechanisms have been demonstrated to enhance the kinetics by other means. In this work, the rate constant of the reduction of oxidized porphyrin dye is enhanced by attaching non-conjugated carbazole triphenylamine moiety using iodine/triiodide and tris(2,2'-bispyridinium)cobalt II/III electrolytes.

View Article and Find Full Text PDF

The use of capacitively coupled contactless conductivity detection (C(4)D) for the characterisation of thin conductive graphene fibres, graphene composite fibres, and graphene coated fibrous materials is demonstrated for the first time. Within a few seconds, the non-destructive C(4)D detector provides a profile of the longetudinal physical homogeneity of the fibre, as well as extra information regarding fibre mophology and composition. In addition to the theoretical considerations related to the factors affect the output signal, this work evaluates the properties of graphene fibres using scanning C(4)D following the manufacturing process of wet-spinning.

View Article and Find Full Text PDF