Publications by authors named "Mozammel Mia"

The features of composite materials such as production flexibility, lightness, and excellent strength put them in the class of materials that attract attention in various critical areas, i.e., aerospace, defense, automotive, and shipbuilding.

View Article and Find Full Text PDF

The necessity to progress towards sustainability has inspired modern researchers to examine the lubrication and cooling effects of vegetable oils on conventional metal cutting operations. Consequently, as an eco-friendly vegetable product, castor oil can be the right choice as Minimum quantity lubrication (MQL) base fluid. Nonetheless, the high viscosity of castor oil limits its flowability and restricts its industrial application.

View Article and Find Full Text PDF

The article shows that noncontact measurement techniques can be an important support to X-ray-based methods when examining the surface condition of modern circulated coins. The forms and degrees of wear of such coins, affecting their utility values, qualifying them as a legal tender in a given country, can be measured and analyzed, among other things, using advanced high-accuracy optical profilometry methods. The authors presented four analyses carried out for reverses and obverses of round coins (1 zloty, 1 franc, 50 bani, 5 pens) characterized by different degrees of surface wear.

View Article and Find Full Text PDF

In this study, an experimental and statistic investigation approach based on analysis of variance (ANOVA) and response surface methodology (RSM) techniques was performed to find the significant main effects and two-factor interaction effects and to determine how the controllable factors such as cutting speed, feed rate, depth of cut (DOC), tool nose radius, substrate and coating method of cutting tools influence surface quality in turning of AISI 1045 steel. The first optimal or near-optimal conditions for the quality of the generated surface and the second ones, including maximum material removal rate, were established using the proposed regression equations. The group mean roughness of the turned workpieces was lower from using chemical vapor deposition (CVD)-coated carbide inserts than the group means of other types of inserts; however they could not achieve the specific lowest roughness.

View Article and Find Full Text PDF

Despite several additive manufacturing techniques are commercially available in market, Fused Deposition Modeling (FDM) is increasingly used by researchers and engineers for new product development. FDM is an established process with a plethora of advantages, but the visible surface roughness (SR), being an intrinsic limitation, is major barrier against utilization of fabricated parts for practical applications. In the present study, the chemical finishing method, using vapour of acetone mixed with heated air, is being used.

View Article and Find Full Text PDF

Biomedical implant rejection due to micromotion and inflammation around an implant leads to osteolysis and eventually has an implant failure because of poor osseointegration. To enhance osseointegration, the implant surface modification both at the nano and micro-scale levels is preferred to result in an enhanced interface between the body tissue and implant. The present study focuses on the modification of the surface of Titanium (α+β) ELI medical grade alloy using powder-mixed electric discharge machining (PMEDM).

View Article and Find Full Text PDF

Fused filament fabrication (FFF), a portable, clean, low cost and flexible 3D printing technique, finds enormous applications in different sectors. The process has the ability to create ready to use tailor-made products within a few hours, and acrylonitrile butadiene styrene (ABS) is extensively employed in FFF due to high impact resistance and toughness. However, this technology has certain inherent process limitations, such as poor mechanical strength and surface finish, which can be improved by optimizing the process parameters.

View Article and Find Full Text PDF

The main innovation of this article is the determination of the impact of curvature of a shape cut out in a brittle material using an abrasive water jet (AWJ) process as an important factor of the machined surfaces. The curvature of a shape, resulting from the size of the radius of the cutting head trajectory, is one of the key requirements necessary for ensuring the required surface quality of materials shaped by the abrasive water jet process, but very few studies have been carried out in this regard. An important goal of the experimental studies carried out here and presented in this work was to determine its influence on the quality of the inner and outer surfaces of the cutting kerf.

View Article and Find Full Text PDF

Carbon dioxide (CO) laser cutting finds one of its most relevant applications in the processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics. Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA), low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as well as commercial products in the industry. The reason is their easy availability and economical aspect in the market.

View Article and Find Full Text PDF

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters.

View Article and Find Full Text PDF

The electrical discharge drilling (EDD) process is an effective machining approach to produce various holes in difficult-to-cut materials. However, the energy efficiency of the EDD operation has not thoroughly been considered in published works. The aim of the current work is to optimize varied parameters for enhancing the material removal rate (MRR), saving drilled energy (ED), and decreasing the expansion of the hole (HE) for the EDD process.

View Article and Find Full Text PDF
Article Synopsis
  • Bone drilling is a critical internal fixation procedure that helps reduce the risk of permanent paralysis by stabilizing bone fragments and the success relies heavily on minimizing tissue damage and controlling heat generation.
  • The existing research primarily focuses on optimizing limited drilling parameters, while many relevant aspects and technologies remain overlooked, indicating a need for a more comprehensive approach.
  • This review aims to create a hierarchical framework that organizes all studied parameters and their performance measures, providing valuable insights for medical surgeons and design engineers and integrating modern modeling and optimization techniques to enhance orthopedic drilling practices.
View Article and Find Full Text PDF

The prevalence of micro-holes is widespread in mechanical, electronic, optical, ornaments, micro-fluidic devices, etc. However, monitoring and detection tool wear and tool breakage are imperative to achieve improved hole quality and high productivity in micro-drilling. The various multi-sensor signals are used to monitor the condition of the tool.

View Article and Find Full Text PDF

The development of modern jet engines would not be possible without dynamically developed nickel-chromium-based superalloys, such as INCONEL The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials.

View Article and Find Full Text PDF

This paper presents the micromanufacturing of aluminum (Al) alloy microrods using micro turning as a competing process to other nontraditional micromachining methods. In that regard, the challenges in such manufacturing have been identified and overcome. The strategies of step-by-step cutting have also been delineated.

View Article and Find Full Text PDF

These days, power consumption and energy related issues are very hot topics of research especially for machine tooling process industries because of the strict environmental regulations and policies. Hence, the present paper discusses the application of such an advanced machining process i.e.

View Article and Find Full Text PDF

Recently, the application of nano-cutting fluids has gained much attention in the machining of nickel-based super alloys due their good lubricating/cooling properties including thermal conductivity, viscosity, and tribological characteristics. In this study, a set of turning experiments on new nickel-based alloy i.e.

View Article and Find Full Text PDF

The sugar mill roller shaft is one of the critical parts of the sugar industry. It requires careful manufacturing and testing in order to meet the stringent specification when it is used for applications under continuous fatigue and wear environments. For heavy industry, the manufacturing of such heavy parts (>600 mm diameter) is a challenge, owing to ease of occurrence of surface/subsurface cracks and inclusions that lead to the rejection of the final product.

View Article and Find Full Text PDF

Achievement of low temperature, thrust force, and clean operating zone under with/without irrigation-assisted drilling is still a challenge in orthopedic surgery owing to substantial bone-tissue damage that extends the healing time. In order to mitigate the above challenges, a new micro-lubrication technique-a low-pressure cold mist impinged on the tool-bone joint interface and penetrating well into the bone surface to improve the cooling/lubrication efficiency-has been proposed in bone drilling. In this study, the aims are to characterize the effect of micro-cooling/lubrication on temperature and thrust force at different levels of cutting speed, feed rate, drill diameter, and coolant flow rate.

View Article and Find Full Text PDF

Copper-based alloy (C93200) composites reinforced with a different weight percentage of marble dust particles (1.5, 3, 4.5, and 6 wt.

View Article and Find Full Text PDF

This work demonstrates that molybdenum disulfide can be successfully used as an impregnating substance that is introduced in the abrasive tool structure for improving its cutting properties and favorably affecting the effects of the abrasive process. For the experimental studies, a set of MoS-treated small-sized grinding wheels with a technical designation 1-35×10×10×109A5X60L10VE0 PI-50 before and after the reciprocating internal cylindrical grinding process of rings made from INCONEL alloy 718 was prepared. The condition of grinding wheel active surface was analyzed using an advanced observation measurement system based on stylus/optical profilometry, as well as confocal and electron microscopy.

View Article and Find Full Text PDF

It is hypothesized that the orientation of tool maneuvering in the milling process defines the quality of machining. In that respect, here, the influence of different path strategies of the tool in face milling is investigated, and subsequently, the best strategy is identified following systematic optimization. The surface roughness, material removal rate and cutting time are considered as key responses, whereas the cutting speed, feed rate and depth of cut were considered as inputs (quantitative factors) beside the tool path strategy (qualitative factor) for the material Al 2024 with a torus end mill.

View Article and Find Full Text PDF

Environmental protection is the major concern of any form of manufacturing industry today. As focus has shifted towards sustainable cooling strategies, minimum quantity lubrication (MQL) has proven its usefulness. The current survey intends to make the MQL strategy more effective while improving its performance.

View Article and Find Full Text PDF

Recently, the concept of smart manufacturing systems urges for intelligent optimization of process parameters to eliminate wastage of resources, especially materials and energy. In this context, the current study deals with optimization of hard-turning parameters using evolutionary algorithms. Though the complex programming, parameters selection, and ability to obtain the global optimal solution are major concerns of evolutionary based algorithms, in the present paper, the optimization was performed by using efficient algorithms i.

View Article and Find Full Text PDF

Now-a-days, the application of hard tuning with CBN tool has been massively increased because the hard turning is a good alternative to grinding process. However, there are some issues that need to be addressed related to the CBN grades and their particular applications in the area of hard turning process. This experimental study investigated the effects of three different grades of CBN insert on the cutting forces and surface roughness.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionoriup1eg9npf1futupnajjek5d97ah8h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once