Publications by authors named "Mozammel H Bhuiyan"

Regeneration of neural tissue and recovery of lost functions following an accident or disease to the central nervous system remains a major challenge worldwide, with limited treatment options available. The main reason for the failure of conventional therapeutic techniques to regenerate neural tissue is the presence of blood-brain barrier separating nervous system from systemic circulation and the limited capacity of self-regeneration of the nervous system. Injectable hydrogels have shown great promise for neural tissue engineering given their suitability for minimally invasive in situ delivery and tunable mechanical and biological properties.

View Article and Find Full Text PDF

Stroke remains a leading cause of adult disability with treatments limited to thrombolytic therapies that are severely limited by a narrow therapeutic window. The potential of hundreds of other therapeutic agents cannot be evaluated due to their poor ability to cross the blood-brain barrier. Recently, biopolymer hydrogels have shown promise at overcoming these obstacles via the delivering of therapeutic molecules (pharmacological, mRNA, stem cells, etc.

View Article and Find Full Text PDF

Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials.

View Article and Find Full Text PDF