Publications by authors named "Moyra Lawrence"

Human induced pluripotent stem cells (iPSCs), since their discovery in 2007, have rapidly become a starting cell type of choice for the differentiation of many mature cell types. Their flexibility, amenability to gene editing and functional equivalence to embryonic stem cells ensured their subsequent adoption by many manufacturing processes for cellular products. In this chapter, we will discuss the process whereby iPSCs are generated, key quality control steps which should be considered during manufacturing, the application of good manufacturing practice to production processes and iPSC-derived cellular products which are already undergoing clinical trials.

View Article and Find Full Text PDF

Platelet deficiency, known as thrombocytopenia, can cause hemorrhage and is treated with platelet transfusions. We developed a system for the production of platelet precursor cells, megakaryocytes, from pluripotent stem cells. These cultures can be maintained for >100 days, implying culture renewal by megakaryocyte progenitors (MKPs).

View Article and Find Full Text PDF

The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count.

View Article and Find Full Text PDF

Quality, traceability and reproducibility are crucial factors in the reliable manufacture of cellular therapeutics, as part of the overall framework of Good Manufacturing Practice (GMP). As more and more cellular therapeutics progress towards the clinic and research protocols are adapted to comply with GMP standards, guidelines for safe and efficient adaptation have become increasingly relevant. In this paper, we describe the process analysis of megakaryocyte manufacture from induced pluripotent stem cells with a view to manufacturing in vitro platelets to European GMP for transfusion.

View Article and Find Full Text PDF

The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently.

View Article and Find Full Text PDF

NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process.

View Article and Find Full Text PDF

Genome editing technologies such as zinc finger nucleases, TALENs and CRISPR/Cas9 have recently emerged as tools with the potential to revolutionise cellular therapy. This is particularly exciting for the field of regenerative medicine, where the large-scale, quality-controlled editing of large numbers of cells could generate essential cellular products ready to move towards the clinic. This review details recent progress towards generating HLA Class I null platelets using genome editing technologies for β2-microglobulin deletion, generating a universally transfusable cellular product.

View Article and Find Full Text PDF

The DNA of each cell is wrapped around histone octamers, forming so-called 'nucleosomal core particles'. These histone proteins have tails that project from the nucleosome and many residues in these tails can be post-translationally modified, influencing all DNA-based processes, including chromatin compaction, nucleosome dynamics, and transcription. In contrast to those present in histone tails, modifications in the core regions of the histones had remained largely uncharacterised until recently, when some of these modifications began to be analysed in detail.

View Article and Find Full Text PDF

Molecular control of the pluripotent state is thought to reside in a core circuitry of master transcription factors including the homeodomain-containing protein NANOG, which has an essential role in establishing ground state pluripotency during somatic cell reprogramming. Whereas the genomic occupancy of NANOG has been extensively investigated, comparatively little is known about NANOG-associated proteins and their contribution to the NANOG-mediated reprogramming process. Using enhanced purification techniques and a stringent computational algorithm, we identify 27 high-confidence protein interaction partners of NANOG in mouse embryonic stem cells.

View Article and Find Full Text PDF