Rationale: Pulmonary innate immune cells play a central role in the initiation and perpetuation of chronic obstructive pulmonary disease (COPD), however the precise mechanisms that orchestrate the development and severity of COPD are poorly understood.
Objectives: We hypothesized that the recently described family of innate lymphoid cells (ILCs) play an important role in COPD.
Methods: Subjects with COPD and healthy controls were clinically evaluated, and their sputum samples were assessed by flow cytometry.
Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC).
View Article and Find Full Text PDFInhaled glucocorticoids form the mainstay of asthma treatment because of their anti-inflammatory effects in the lung. Exposure to the air pollutant ozone (O) exacerbates chronic airways disease. We and others showed that presence of the epithelial-derived surfactant protein-D (SP-D) is important in immunoprotection against inflammatory changes including those induced by O inhalation in the airways.
View Article and Find Full Text PDFAsthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (T2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks T2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms.
View Article and Find Full Text PDFThe asthmatic airways are highly susceptible to inflammatory injury by air pollutants such as ozone (O ), characterized by enhanced activation of eosinophilic granulocytes and a failure of immune protective mechanisms. Eosinophil activation during asthma exacerbation contributes to the proinflammatory oxidative stress by high levels of nitric oxide (NO) production and extracellular DNA release. Surfactant protein-D (SP-D), an epithelial cell product of the airways, is a critical immune regulatory molecule with a multimeric structure susceptible to oxidative modifications.
View Article and Find Full Text PDFInvariant NKT (iNKT) cells bridge innate and adaptive immunity by rapidly secreting cytokines and lysing targets following TCR recognition of lipid antigens. Based on their ability to secrete IFN-γ, IL-4 and IL-17A, iNKT-cells are classified as NKT-1, NKT-2, and NKT-17 subsets, respectively. The molecular pathways regulating iNKT-cell fate are not fully defined.
View Article and Find Full Text PDFPrevious studies have highlighted the importance of lung-draining lymph nodes in the respiratory allergic immune response, whereas the lung parenchymal immune system has been largely neglected. We describe a new in vivo model of respiratory sensitization to Blomia tropicalis, the principal asthma allergen in the tropics, in which the immune response is focused on the lung parenchyma by transfer of Th2 cells from a novel TCR transgenic mouse, specific for the major B. tropicalis allergen Blo t 5, that targets the lung rather than the draining lymph nodes.
View Article and Find Full Text PDFThe roles of NK cells, surfactant protein D (SP-D), and IFN-γ, as well as the effect of ozone (O3) inhalation, were studied on recirculation of pulmonary dendritic cells (DC) to the mediastinal lymph nodes. O3 exposure and lack of SP-D reduced NK cell IFN-γ and lung tissue CCL21 mRNA expression and impaired DC homing to the mediastinal lymph nodes. Notably, addition of recombinant SP-D to naive mononuclear cells stimulated IFN-γ release in vitro.
View Article and Find Full Text PDFBackground: Asthmatic patients are highly susceptible to air pollution and in particular to the effects of ozone (O3) inhalation, but the underlying mechanisms remain unclear.
Objective: Using mouse models of O3-induced airway inflammation and airway hyperresponsiveness (AHR), we sought to investigate the role of the recently discovered group 2 innate lymphoid cells (ILC2s).
Methods: C57BL/6 and BALB/c mice were exposed to Aspergillus fumigatus, O3, or both (3 ppm for 2 hours).
Influenza causes serious and sometimes fatal disease in individuals at risk due to advanced age or immunodeficiencies. Despite progress in the development of seasonal influenza vaccines, vaccine efficacy in elderly and immunocompromised individuals remains low. We recently developed a passive immunization strategy using an adeno-associated virus (AAV) vector to deliver a neutralizing anti-influenza antibody at the site of infection, the nasal airways.
View Article and Find Full Text PDFRationale: Respiratory viral infections can result in the establishment of chronic lung diseases. Understanding the early innate immune mechanisms that participate in the development of chronic postviral lung disease may reveal new targets for therapeutic intervention. The intracellular viral sensor protein melanoma differentiation-associated protein 5 (MDA5) sustains the acute immune response to Sendai virus, a mouse pathogen that causes chronic lung inflammation, but its role in the development of postviral chronic lung disease is unknown.
View Article and Find Full Text PDFAn effective immune response against influenza A infection depends on the generation of virus-specific T cells. NK cells are one of the first-line defenses against influenza A infection. We set out to delineate the role of NK cells in T cell immunity using a murine model of influenza A infection with A/PR/8/34.
View Article and Find Full Text PDFThe uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection.
View Article and Find Full Text PDF