Background: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging.
Objective: This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media.
Background: Stopping or reducing risky or unneeded medications ("deprescribing") could improve older adults' health. Electronic health data can support observational and intervention studies of deprescribing, but there are no standardized measures for key variables, and healthcare systems have differing data types and availability. We developed definitions for chronic medication use and discontinuation based on electronic health data and applied them in a case study of benzodiazepines and Z-drugs in five diverse US healthcare systems.
View Article and Find Full Text PDFFew studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries.
View Article and Find Full Text PDFBackground: Social determinants of health (SDoH) like socioeconomics and neighborhoods strongly influence outcomes, yet standardized SDoH data is lacking in electronic health records (EHR), limiting research and care quality.
Methods: We searched PubMed using keywords "SDOH" and "EHR", underwent title/abstract and full-text screening. Included records were analyzed under five domains: 1) SDoH screening and assessment approaches, 2) SDoH data collection and documentation, 3) Use of natural language processing (NLP) for extracting SDoH, 4) SDoH data and health outcomes, and 5) SDoH-driven interventions.
Background: Atopic dermatitis (AD) is a chronic skin condition that millions of people around the world live with each day. Performing research into identifying the causes and treatment for this disease has great potential to provide benefits for these individuals. However, AD clinical trial recruitment is not a trivial task due to the variance in diagnostic precision and phenotypic definitions leveraged by different clinicians, as well as the time spent finding, recruiting, and enrolling patients by clinicians to become study participants.
View Article and Find Full Text PDFStud Health Technol Inform
January 2024
According to the World Stroke Organization, 12.2 million people world-wide will have their first stroke this year almost half of which will die as a result. Natural Language Processing (NLP) may improve stroke phenotyping; however, existing rule-based classifiers are rigid, resulting in inadequate performance.
View Article and Find Full Text PDFStud Health Technol Inform
January 2024
In the United States, more than 12% of the population will experience thyroid dysfunction. Patient symptoms often reported with thyroid dysfunction include fatigue and weight change. However, little is understood about the relationship between these symptoms documented in the outpatient setting and ordering patterns for thyroid testing among various patient groups by age and sex.
View Article and Find Full Text PDFBackground: Information regarding opioid use disorder (OUD) status and severity is important for patient care. Clinical notes provide valuable information for detecting and characterizing problematic opioid use, necessitating development of natural language processing (NLP) tools, which in turn requires reliably labeled OUD-relevant text and understanding of documentation patterns.
Objective: To inform automated NLP methods, we aimed to develop and evaluate an annotation schema for characterizing OUD and its severity, and to document patterns of OUD-relevant information within clinical notes of heterogeneous patient cohorts.
Electronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities and best practices for monitoring patients, which could save lives and reduce burden on the healthcare system.
View Article and Find Full Text PDFElectronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities and best practices for monitoring patients, which could save lives and reduce burden on the healthcare system.
View Article and Find Full Text PDFBackground: Atopic dermatitis (AD) is a chronic skin condition that millions of people around the world live with each day. Performing research studies into identifying the causes and treatment for this disease has great potential to provide benefit for these individuals. However, AD clinical trial recruitment is a non-trivial task due to variance in diagnostic precision and phenotypic definitions leveraged by different clinicians as well as time spent finding, recruiting, and enrolling patients by clinicians to become study subjects.
View Article and Find Full Text PDFObjective: Epilepsy is largely a treatable condition with antiseizure medication (ASM). Recent national administrative claims data suggest one third of newly diagnosed adult epilepsy patients remain untreated 3 years after diagnosis. We aimed to quantify and characterize this treatment gap within a large US academic health system leveraging the electronic health record for enriched clinical detail.
View Article and Find Full Text PDFOur objective was to detect common barriers to post-acute care (B2PAC) among hospitalized older adults using natural language processing (NLP) of clinical notes from patients discharged home when a clinical decision support system recommended post-acute care. We annotated B2PAC sentences from discharge planning notes and developed an NLP classifier to identify the highest-value B2PAC class (negative patient preferences). Thirteen machine learning models were compared with Amazon's AutoGluon deep learning model.
View Article and Find Full Text PDFBackground: Nurse-led rounding checklists are a common strategy for facilitating evidence-based practice in the intensive care unit (ICU). To streamline checklist workflow, some ICUs have the nurse or another individual listen to the conversation and customize the checklist for each patient. Such customizations assume that individuals can reliably assess whether checklist items have been addressed.
View Article and Find Full Text PDFPurpose: Predicting 30-day readmission risk is paramount to improving the quality of patient care. In this study, we compare sets of patient-, provider-, and community-level variables that are available at two different points of a patient's inpatient encounter (first 48 hours and the full encounter) to train readmission prediction models and identify possible targets for appropriate interventions that can potentially reduce avoidable readmissions.
Methods: Using electronic health record data from a retrospective cohort of 2,460 oncology patients and a comprehensive machine learning analysis pipeline, we trained and tested models predicting 30-day readmission on the basis of data available within the first 48 hours of admission and from the entire hospital encounter.
Background: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients.
View Article and Find Full Text PDFBackground: Oral case presentation is a crucial skill of physicians and a key component of team-based care. However, consistent and objective assessment and feedback on presentations during training are infrequent.
Objective: To determine the potential value of applying natural language processing, computer software that extracts meaning from text, to transcripts of oral case presentations as a strategy to assess their quality automatically and objectively.
Electronic health records (EHR) are collected as a routine part of healthcare delivery, and have great potential to be utilized to improve patient health outcomes. They contain multiple years of health information to be leveraged for risk prediction, disease detection, and treatment evaluation. However, they do not have a consistent, standardized format across institutions, particularly in the United States, and can present significant analytical challenges- they contain multi-scale data from heterogeneous domains and include both structured and unstructured data.
View Article and Find Full Text PDFPurpose: In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population.
Methods: A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE).
Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking.
Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021.