Background: Acute myeloid leukemia (AML) with biallelic (CEBPA) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs.
Methods: Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα.
Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-β could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process.
View Article and Find Full Text PDFNK group 2, member D (NKG2D) is one of the most critical activating receptors expressed by natural killer (NK) cells. There is growing evidence that acute myeloid leukemia (AML) cells may evade NK cell-mediated cell lysis by expressing low or no ligands for NKG2D (NKG2D-Ls). We hypothesized that CCAAT/enhancer-binding protein α (C/EBPα), one of the most studied lineage-specific transcription factors in hematopoiesis, might influence the expression of NKG2D-Ls.
View Article and Find Full Text PDFThe transplant outcomes of non-first-degree (NFD) related donors in haploidentical haematopoietic stem cell transplantation (haplo-HSCT) remain unclear. This multi-centre analysis compared NFD and first-degree (FD) related donors in haplo-HSCT using a low-dose anti-T-lymphocyte globulin/G-CSF-mobilised peripheral blood stem cell graft-based regimen. Ninety-nine patients (33 NFD; 66 FD) were included.
View Article and Find Full Text PDFJ Leukoc Biol
August 2021
Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases.
View Article and Find Full Text PDF