Ensuring the safety of the use of probiotics is a top priority. Obviously, in addition to studying the beneficial properties of lactic acid bacteria, considerable attention should be directed to assessing the virulence of microorganisms as well as investigating the possibility of its evolution under conditions of selective pressure. To assess the virulence of probiotics, it is now recommended to analyze the genomes of bacteria in relation to the profiles of the virulome, resistome, and mobilome as well as the analysis of phenotypic resistance and virulence .
View Article and Find Full Text PDFThe extracellular vesicles (EVs) produced by bacteria transport a wide range of compounds, including proteins, DNA and RNA, mediate intercellular interactions, and may be important participants in the mechanisms underlying the persistence of infectious agents. This study focuses on testing the hypothesis that the EVs of mycoplasmas, the smallest prokaryotes capable of independent reproduction, combined in the class referred to as Mollicutes, can penetrate into eukaryotic cells and modulate their immunoreactivity. To verify this hypothesis, for the first time, studies of in vitro interaction between human skin fibroblasts and vesicles isolated from Acholeplasma laidlawii (the ubiquitous mycoplasma that infects higher eukaryotes and is the main contaminant of cell cultures and vaccines) were conducted using confocal laser scanning microscopy and proteome profiling, employing a combination of 2D-DIGE and MALDI-TOF/TOF, the Mascot mass-spectrum analysis software and the DAVID functional annotation tool.
View Article and Find Full Text PDFFor the first time it was shown that the development of resistance to ciprofloxacin in vitro in Acholeplasma laidlawii, a mycoplasma which is widely spread in nature and which is the main contaminant of cell cultures and vaccines, is associated with diverse pathways of virulence evolution: virulome and virulence differ significantly between ciprofloxacin-resistant strains, including those with the same level of antimicrobial resistance.
View Article and Find Full Text PDFFor the first time it is shown that the development of resistance to melittin in Acholeplasma laidlawii, a mycoplasma that is widely spread in nature and that is the main contaminant of cell cultures and vaccines, is associated with significant changes in the genomic profile, in cellular and vesicular proteomes, as well as in virulence.
View Article and Find Full Text PDFRepresentatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations.
View Article and Find Full Text PDFis widespread hypermutable bacteria (class Mollicutes) capable of infecting humans, animals, plants, which is the main contaminant of cell cultures and vaccine preparations. The mechanisms of the development of antimicrobial resistance of this bacterium are associated with the secretion of extracellular vesicles, which can mediate the lateral transfer of antibiotic resistance determinants. We compared the genome profiles of ciprofloxacin-resistant strains PG8r1 (MIC 10 µg/ml) and PG8r3 (MIC 10 µg/ml) selected under different conditions - when ciprofloxacin-sensitive (MIC 0.
View Article and Find Full Text PDFTo elucidate the regularities of adaptation of the representatives of class Mollicutes to antimicrobials and to identify the promising targets for eradication of mycoplasma infections and contaminations the comparative analysis of the molecular basis of bacterial resistance to antibiotics of different classes is needed. Previously, we presented the data on the whole-genome sequences of strains with different susceptibility to ciprofloxacin (GenBank: LXYB00000000.1), tetracycline (GenBank: NELO00000000.
View Article and Find Full Text PDF(class Mollicutes), a major contaminant of cell cultures, quickly adapts to various classes of antimicrobials, including antimicrobial peptides. The extracellular vesicles of this bacterium can play a significant role in the development of drug-resistance Chernov et al., 2018.
View Article and Find Full Text PDFThe development of new antimicrobials has become an urgent priority because of a global challenge emerging from the rise of antimicrobial resistant pathogens. Areas covered: In this review, the authors discuss the opportunities offered by modern omics approaches to address the challenge and the use of this approach in antimicrobial development. Specifically, the authors focus on the role of omics technologies and bioinformatics for the revelation of the effects of antimicrobials in a variety of microbial cellular processes, as well as the identification of potential cellular targets, the mechanisms of antimicrobial resistance, and the development of new antimicrobials.
View Article and Find Full Text PDFThis review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes.
View Article and Find Full Text PDFInflammation And The Ways For Its Regulation: The development of an effective system for the treatment of inflammatory diseases requires comprehensive studies of the cellular signaling molecular networks comprising responses to various stressors, including pathogenic and non-pathogenic microorganisms. Significant attention on fundamental and applied research has recently focused on inducers of hemе oxygenase-1 (HO-1) and inhibitors of the expression of this enzyme, which regulates expression of this and other cytoprotective molecules and modulation of inflammation. Recent studies indicate that mycoplasmas (a major group of human pathogens of the Mollicutes) are capable of modulating inflammatory responses through the activation of the Nrf2 and the expression of HO-1.
View Article and Find Full Text PDFThe present review discusses the problem of controlling mycoplasmas (class Mollicutes), the smallest of self-replicating prokaryotes, parasites of higher eukaryotes, and main contaminants of cell cultures and vaccines. Possible mechanisms for the rapid development of resistance to antimicrobial drugs in mycoplasmas have been analyzed. Omics technologies provide new opportunities for investigating the molecular basis of bacterial adaptation to stress factors and identifying resistomes, the total of all genes and their products contributing to antibiotic resistance in microbes.
View Article and Find Full Text PDFAs a result of comparative analysis of complete genomes as well as cell and vesicular proteomes of A. laidlawii strains differing in sensitivity to ciprofloxacin, it was first shown that the mycoplasma resistance to the antibiotic is associated with the reorganization of genomic and proteomic profiles, which concerns many genes and proteins involved in fundamental cellular processes and realization of bacterial virulence.
View Article and Find Full Text PDFMycoplasmas (class Mollicutes), the smallest prokaryotes capable of self-replication, as well as Archaea, Gram-positive and Gram-negative bacteria constitutively produce extracellular vesicles (EVs). However, little is known regarding the content and functions of mycoplasma vesicles. Here, we present for the first time a proteomics-based characterisation of extracellular membrane vesicles from Acholeplasma laidlawii PG8.
View Article and Find Full Text PDFThis study demonstrated that extracellular membrane vesicles are involved with the development of resistance to fluoroquinolones by mycoplasmas (class Mollicutes). This study assessed the differences in susceptibility to ciprofloxacin among strains of Acholeplasma laidlawii PG8. The mechanisms of mycoplasma resistance to antibiotics may be associated with a mutation in a gene related to the target of quinolones, which could modulate the vesiculation level.
View Article and Find Full Text PDFFor the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses) in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L.
View Article and Find Full Text PDFFor the first time, we studied the phytopathogenicity toward Oryza sativa L. of unadapted and adapted to unfavorable environment (starvation) cells of Acholeplasma laidlawii PG8--ubiquitous mycoplasma found in the soil, waste waters, tissues of the highest eukaryotes and being the basic contaminant of cell cultures and a causative agent of phytomycoplasmoses. The features of morphology, ultrastructural organization and proteomes of unadapted and adapted cells of the mycoplasma and infected plants were presented.
View Article and Find Full Text PDFExtracellular vesicle production is believed to be a ubiquitous process in bacteria, but the data on such a process in Mollicutes are absent. We report the isolation of ultramicroforms - extracellular vesicles from supernatants of Acholeplasma laidlawii PG8 (ubiquitous mycoplasma; the main contaminant of cell culture). Considering sizes, morphology, and ultrastructural organization, the ultramicroforms of A.
View Article and Find Full Text PDFThe data obtained in this study proved that Mycoplasma gallisepticum S6 known as avian pathogen had a phytopathogenic potential. The vegetative forms and the viable but nonculturable (VBNC) forms of this mycoplasma could infect the plants via an assemblage of rootlets, invade different tissues, persist there and cause destructive events characteristic to phytomycoplasmoses. In comparison with the vegetative forms, the VBNC forms induced more prominent destructive changes.
View Article and Find Full Text PDF