Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB.
View Article and Find Full Text PDFNuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process.
View Article and Find Full Text PDFNanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture.
View Article and Find Full Text PDFWater splitting is a long-standing quest to material research for mitigating the global energy crisis. Despite high efficiency shown by several high cost noble metal containing electrocatalysts in the water splitting reaction, scientists are focused on alternate metal-free carbon or polymer based materials with comparable activity to make the process economical. In this article, we have strategically designed a noble metal-free thiadiazole (TDA) and triazine (Trz) linked porous organic polymer (TDA-Trz-POP) having N- and S-rich surface.
View Article and Find Full Text PDFUse of huge amount (1450-1650 mm) of arsenic contaminated (14.0-24.5 mg l) ground water to irrigate winter rice resulted in high deposition of arsenic (As) in the topsoil and in rice grains, posing a serious threat to soil and human health of the Bengal basin.
View Article and Find Full Text PDFThe trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet).
View Article and Find Full Text PDFRationale: Reduced plasma cholesterol and increased high-density lipoprotein (HDL) levels promote regression of atherosclerosis, in a process characterized by lipid unloading and emigration of macrophages from lesions. In contrast free cholesterol loading of macrophages leads to imbalanced Rac1/Rho activities and impaired chemotaxis.
Objective: To study the role of HDL and the ATP-binding cassette transporters ABCA1 and ABCG1 in modulating the chemotaxis of macrophages.
The transbilayer distribution of many lipids in the plasma membrane and in endocytic compartments is asymmetric, and this has important consequences for signaling and membrane physical properties. The transbilayer distribution of cholesterol in these membranes is not properly established. Using the fluorescent sterols, dehydroergosterol and cholestatrienol, and a variety of fluorescence quenchers, we studied the transbilayer distribution of sterols in the plasma membrane (PM) and the endocytic recycling compartment (ERC) of a CHO cell line.
View Article and Find Full Text PDFTransport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes.
View Article and Find Full Text PDFInteraction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) containing different mole percents of monosialoganglioside (GM1) has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in the presence of phospholipid vesicles containing various amounts of GM1 yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more hydrophobic and rigid in membranes that contain GM1 than in membranes without it. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed reduced quenching efficiency with the increase in GM1 content of the vesicles, demonstrating lesser accessibility of the iodide quenchers to dibucaine in the presence of GM1, when compared to that in its absence.
View Article and Find Full Text PDFWe analyzed the intracellular transport of HDL and its associated free sterol in polarized human hepatoma HepG2 cells. Using pulse-chase protocols, we demonstrated that HDL labeled with Alexa 488 at the apolipoprotein (Alexa 488-HDL) was internalized by a scavenger receptor class B type I (SR-BI)-dependent process at the basolateral membrane and became enriched in a subapical/apical recycling compartment. Most Alexa 488-HDL was rapidly recycled to the basolateral cell surface and released from cells.
View Article and Find Full Text PDFThe quinoline-based tertiary amine dibucaine has been shown to bind the membrane skeletal protein spectrin with a dissociation constant of 3.5x10(-5) M at 25 degrees C. Such binding is detected by monitoring the quenching of the tryptophan fluorescence intensity with increasing concentrations of dibucaine only and not with the benzene-based local anesthetics procaine, tetracaine and lidocaine.
View Article and Find Full Text PDF