Publications by authors named "Mousumi Baruah"

Since death is an inevitable phenomenon, exploring cell deaths holds importance. During this process, the cellular microenvironment within cells such as pH, polarity, viscosity etc alter. One such microenvironment, viscosity elevates during different cell deaths.

View Article and Find Full Text PDF

Lipid droplets (LDs) act as an energy reservoir in cancer cells; on the other hand, mitochondria are hyperactive to fulfill the energy demand to accelerate cell proliferation. We are interested in unfolding the relationship between the cellular energy reservoir and energy producer through fluorescence labeling. Thus, a dual organelle-targeted fluorescent probe has been rationally developed.

View Article and Find Full Text PDF

Mitochondria are valuable subcellular organelles and play crucial roles in redox signaling in living cells. Substantial evidence proved that mitochondria are one of the critical sources of reactive oxygen species (ROS), and overproduction of ROS accompanies redox imbalance and cell immunity. Among ROS, hydrogen peroxide (HO) is the foremost redox regulator, which reacts with chloride ions in the presence of myeloperoxidase (MPO) to generate another biogenic redox molecule, hypochlorous acid (HOCl).

View Article and Find Full Text PDF

Herein we report a catalyst, metal and additive free generation of carbonyl ylides by blue LED irradiation of aryl diazoacetates in presence of aldehydes. The resulting ylides underwent [3+2] cycloaddition with substituted maleimides present in the reaction mixture to afford 4, 6-dioxo-hexahydro-1H-furo[3, 4-c] pyrrole in excellent yields. Fifty compounds were synthesized based on this scaffold.

View Article and Find Full Text PDF

The differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2.

View Article and Find Full Text PDF

Nanoscale assembly of ultrasmall metal nanoclusters (MNCs) by means of molecular forces has proven to be a powerful strategy to engineer their molecule-like properties in multiscale dimensions. By leveraging depletion attraction as the guiding force, herein, we demonstrate the formation of kinetically trapped NCs assemblies with enhanced photoluminescence (PL) and excited state lifetimes and extend the principle to cluster impregnated cationic nanogels, nonluminescent Au(I)-thiolate complexes, and weakly luminescent CuNCs. We further demonstrate a thermal energy driven kinetic barrier breaking process to isolate these assemblies.

View Article and Find Full Text PDF

Herein we have reported the discovery of a pentacyclic building block comprised of fused indole-quinoline and piperidinone from the natural product perophoramidine as a formidable anticancer agent. The compounds were synthesized in six steps where the key steps involved a blue LED mediated intramolecular cyclopropanation of the indole intermediates and concomitant reduction of the associated aryl nitro moiety to nitroso in the molecule. Cytotoxicity screening of the compounds against an array of cancer cells that is, MCF7, HCT116 and A549 demonstrated 0.

View Article and Find Full Text PDF

The human innate immune system eliminates invading pathogens through phagocytosis. The first step of this process is activating the nicotinamide adenine dinucleotide phosphate oxidase (Nox2) that utilizes NADPH to produce superoxide anion radicals and other reactive oxygen species (ROS). These ROS then alter the mitochondrial membrane potential and increase peroxide in the mitochondria.

View Article and Find Full Text PDF

This review explains various strategies for developing fluorescent probes to detect reactive carbonyl species (RCS). There are several mono and diacarbonyls among 30 varieties of reactive carbonyl species (RCSs) so far discovered, which play pivotal roles in pathological processes such as cancer, neurodegenerative diseases, cardiovascular disease, renal failure, and diabetes mellitus. These RCSs play essential roles in maintaining ion channel regulation, cellular signaling pathways, and metabolisms.

View Article and Find Full Text PDF

A unique and highly water-soluble ICT-based fluorescent probe is developed for efficient detection and discrimination of reactive monocarbonyl formaldehyde (FA) from dicarbonyl methylglyoxal (MGO)/glyoxal (GO) by modulating the ICT process, which was confirmed by photophysical and TD-DFT analysis. The probe is applied in cellular imaging and quantifying FA in preserved food and MGO in manuka honey.

View Article and Find Full Text PDF