Publications by authors named "Moustapha Kassem"

Background: C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells.

View Article and Find Full Text PDF

Human aging is linked to bone loss, resulting in bone fragility and an increased risk of fractures. This is primarily due to an age-related decline in the function of bone-forming osteoblastic cells and accelerated cellular senescence within the bone microenvironment. Here, we provide a detailed discussion of the hypothesis that age-related defective bone formation is caused by senescence of skeletal stem cells, as they are the main source of bone forming osteoblastic cells and influence the composition of bone microenvironment.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoporosis is a disease that makes bones weaker as people get older, increasing the risk of fractures.
  • Scientists found two plant-based antioxidants, Apigenin and Rutaecarpine, that help bone stem cells grow into bone cells better.
  • These antioxidants could help maintain healthy bones as we age and might be a way to prevent osteoporosis.
View Article and Find Full Text PDF

Background: Human breast cancer most frequently originates within a well-defined anatomical structure referred to as the terminal duct lobular unit (TDLU). This structure is endowed with its very own lobular fibroblasts representing one out of two steady-state fibroblast subtypes-the other being interlobular fibroblasts. While cancer-associated fibroblasts (CAFs) are increasingly appreciated as covering a spectrum of perturbed states, we lack a coherent understanding of their relationship-if any-with the steady-state fibroblast subtypes.

View Article and Find Full Text PDF

Legumain is a lysosomal cysteine protease that has been implicated in an increasing amount of physiological and pathophysiological processes. However, the upstream mechanisms regulating the expression and function of legumain are not well understood. Here, we provide in vitro and in vivo data showing that vitamin D (VD) enhances legumain expression and function.

View Article and Find Full Text PDF

Background: Skeletal stem/progenitor cells (SSPCs) in the bone marrow can differentiate into osteoblasts or adipocytes in response to microenvironmental signalling input, including hormonal signalling. Glucocorticoids (GC) are corticosteroid hormones that promote adipogenic differentiation and are endogenously increased in patients with Cushing´s syndrome (CS). Here, we investigate bone marrow adiposity changes in response to endogenous or exogenous GC increases.

View Article and Find Full Text PDF

There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered a substance called KIAA1199 that affects how stem cells in the bone help the bone to grow and heal.
  • High levels of KIAA1199 in the blood can mean a higher chance of breaking bones, especially in older people with weak bones.
  • Removing KIAA1199 from stem cells made them better at forming new bone, leading to stronger bones and faster healing in experiments with mice.
View Article and Find Full Text PDF

The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization.

View Article and Find Full Text PDF

Current techniques for monitoring disease progression and testing drug efficacy in animal models of inflammatory arthritis are either destructive, time-consuming, subjective, or require ionizing radiation. To accommodate this, we have developed a non-invasive and label-free optical system based on Raman spectroscopy for monitoring tissue alterations in rodent models of arthritis at the biomolecular level. To test different sampling geometries, the system was designed to collect both transmission and reflection mode spectra.

View Article and Find Full Text PDF

Objective: Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects.

View Article and Find Full Text PDF

The cysteine protease legumain (also known as asparaginyl endopeptidase or δ-secretase) is the only known mammalian asparaginyl endopeptidase and is primarily localized to the endolysosomal system, although it is also found extracellularly as a secreted protein. Legumain is involved in the regulation of diverse biological processes and tissue homeostasis, and in the pathogenesis of various malignant and nonmalignant diseases. In addition to its proteolytic activity that leads to the degradation or activation of different substrates, legumain has also been shown to have a nonproteolytic ligase function.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a high-fat diet affects bones in female mice that had their ovaries removed, mimicking postmenopausal women.
  • Mice on a high-fat diet gained a lot of weight and showed poor sugar control, which negatively impacted their bone health.
  • The results suggest that both obesity and lack of estrogen make bones weaker, leading to more fat in bone marrow and less bone strength.
View Article and Find Full Text PDF

Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D).

View Article and Find Full Text PDF

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level.

View Article and Find Full Text PDF

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high-fat diet and insulinopenia induced by treatment with streptozotocin, we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by -28.

View Article and Find Full Text PDF

Background: Injection of autologous adipose tissue (AT) has recently been demonstrated to be an effective and safe treatment for anal fistulas. AT mesenchymal stem cells (AT-MSCs) mediate the healing process, but the relationship between molecular characteristics of AT-MSCs of the injected AT and fistula healing has not been adequately studied. Thus we aimed to characterize the molecular and functional properties of AT-MSCs isolated from autologous AT injected as a treatment of cryptogenic high transsphincteric perianal fistulas and correlate these findings to the healing process.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) has been considered for several decades as a silent bystander that fills empty space left in bone marrow following age-related decrease in hematopoiesis. However, recently new discoveries revealed BMAT as a secretory and metabolically active organ contributing to bone and whole-body energy metabolism. BMAT exhibits metabolic functions distinct from extramedullary adipose depots, relevant to its role in regulation of energy metabolism and its contribution to fracture risk observed in metabolic bone diseases.

View Article and Find Full Text PDF

Background: Transplantation of human bone marrow stromal cells (hBMSCs) is a promising therapy for bone regeneration due to their ability to differentiate into bone forming osteoblastic cells. However, transplanted hBMSCs exhibit variable capacity for bone formation resulting in inconsistent clinical outcome. The aim of the study was to identify a set of donor- and cell-related characteristics that detect hBMSCs with optimal osteoblastic differentiation capacity.

View Article and Find Full Text PDF
Article Synopsis
  • Reproductive hormones are essential for the growth and health of mammalian bones, with disorders like early menopause leading to low bone density and fracture risk.
  • Recent research has broadened the understanding of how traditional hormones, as well as newer neuropeptides and hormones, influence the relationship between bone health and the reproductive system.
  • There is an urgent need for updated research to address the effects of these hormones on bone physiology and to develop effective treatments for bone fragility, especially in an aging population.
View Article and Find Full Text PDF

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are gut hormones secreted postprandially. In healthy humans, both hormones decrease bone resorption accompanied by a rapid reduction in parathyroid hormone (PTH). The aim of this study was to investigate whether the changes in bone turnover after meal intake and after GIP- and GLP-2 injections, respectively, are mediated via a reduction in PTH secretion.

View Article and Find Full Text PDF