Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes.
View Article and Find Full Text PDFThe trophoblast cells are responsible for the transfer of nutrients between the mother and the foetus and play a major role in placental endocrine function by producing and releasing large amounts of hormones and growth factors. Syncytiotrophoblast cells (STB), formed by the fusion of mononuclear cytotrophoblasts (CTB), constitute the interface between the foetus and the mother and are essential for all of these functions. We performed transcriptome analysis of human placental samples from two control groups-live births (LB), and stillbirths (SB) with a clinically recognised cause-and from our study group, idiopathic stillbirths (iSB).
View Article and Find Full Text PDFDuring human fetal development, sex differentiation occurs not only in the gonads but also in the adjacent developing reproductive tract. However, while the cellular composition of male and female human fetal gonads is well described, that of the adjacent developing reproductive tract remains poorly characterized. Here, we performed single-cell transcriptomics on male and female human fetal gonads together with the adjacent developing reproductive tract from first and second trimesters, highlighting the morphological and molecular changes during sex differentiation.
View Article and Find Full Text PDFCurrent methods to generate human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) can be inefficient, and it is challenging to generate sufficient hPGCLCs to optimize gametogenesis. We present a differentiation method that uses diluted basement membrane extract (BMEx) and low BMP4 concentration to efficiently induce hPGCLC differentiation in scalable 2D cell culture. We show that BMEx overlay potentiated BMP/SMAD signaling, induced lumenogenesis, and increased expression of key hPGCLC-progenitor markers such as TFAP2A and EOMES.
View Article and Find Full Text PDFRetinitis pigmentosa and Leber congenital amaurosis are inherited retinal dystrophies that can be caused by mutations in the Crumbs homolog 1 (CRB1) gene. CRB1 is required for organizing apical-basal polarity and adhesion between photoreceptors and Müller glial cells. CRB1 patient-derived induced pluripotent stem cells were differentiated into CRB1 retinal organoids that showed diminished expression of variant CRB1 protein observed by immunohistochemical analysis.
View Article and Find Full Text PDFBackground: High-Fructose Corn Syrup (HFCS), a sweetener rich in glucose and fructose, is nowadays widely used in beverages and processed foods; its consumption has been correlated to the emergence and progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nevertheless, the molecular mechanisms by which HFCS impacts hepatic metabolism remain scarce, especially in the context of obesity. Besides, the majority of current studies focuses either on the detrimental role of fructose in hepatic steatosis or compare separately the additive impact of fructose versus glucose in high fat diet-induced NAFLD.
View Article and Find Full Text PDFPurpose Of The Review: Mitochondrial dysfunction has long been proposed to play a crucial role in the pathogenesis of a considerable number of disorders, such as neurodegeneration, cancer, cardiovascular, and metabolic disorders, including obesity-related insulin resistance and non-alcoholic fatty liver disease (NAFLD). Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify their formation through biogenesis and the opposite processes of fission and fusion, the fragmentation, and connection of mitochondrial network areas respectively.
View Article and Find Full Text PDFBACKGROUND Persistent polyclonal B cell lymphocytosis (PPBL) is a benign clinical condition, which is characterized by persistent absolute polyclonal B lymphocytosis (>4.0 K/μL), with the presence of circulating binucleated lymphocytes on the peripheral blood smear and an extra 3 chromosome long arm i(3q) in most cases. Immunophenotype reveals the polyclonal population of B cell lymphocytes with expression of CD19, CD20, and CD22 antigens, and kappa and lambda immunoglobulin light chains.
View Article and Find Full Text PDFHuman ovarian folliculogenesis is a highly regulated and complex process. Characterization of follicular cell signatures during this dynamic process is important to understand follicle fate (to grow, become dominant, or undergo atresia). The transcriptional signature of human oocytes and granulosa cells (GCs) in early-growing and ovulatory follicles have been previously described; however, that of oocytes with surrounding GCs in small antral follicles have not been studied yet.
View Article and Find Full Text PDFDuring gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development.
View Article and Find Full Text PDFGlucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element-binding protein (pCREB).
View Article and Find Full Text PDFSenescence is considered to be a cardinal player in several chronic inflammatory and metabolic pathologies. The two dominant mechanisms of senescence include replicative senescence, predominantly depending on age-induced telomere shortening, and stress-induced senescence, triggered by external or intracellular harmful stimuli. Recent data indicate that hepatocyte senescence is involved in the development of nonalcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes. It is most prevalent in western countries and includes a wide range of clinical and histopathological findings, namely from simple steatosis to steatohepatitis and fibrosis, which may lead to cirrhosis and hepatocellular cancer. The key event for the transition from steatosis to fibrosis is the activation of quiescent hepatic stellate cells (qHSC) and their differentiation to myofibroblasts.
View Article and Find Full Text PDFBacterial urogenital infections caused by multi-drug resistant organisms (MDROs), are increasingly becoming a severe public health issue. The purpose of the present study was to examine the epidemiology of recurrent UTIs along with antimicrobial resistance patterns in a cohort of patients followed as outpatients at an Infectious Disease clinic of a tertiary care center in Greece. One hundred, sequential patients suffering from recurrent UTIs and coming for clinical evaluation, follow-up and treatment were examined; microbiological urine culture results were analyzed.
View Article and Find Full Text PDFThe ovary is perhaps the most dynamic organ in the human body, only rivaled by the uterus. The molecular mechanisms that regulate follicular growth and regression, ensuring ovarian tissue homeostasis, remain elusive. We have performed single-cell RNA-sequencing using human adult ovaries to provide a map of the molecular signature of growing and regressing follicular populations.
View Article and Find Full Text PDFObjective: To investigate the levels of DNA methylation in the KvDMR1 (KvLQT1 differentially methylated region 1) in embryonic and extra-embryonic tissues.
Design: Cross-sectional study.
Setting: University medical center and clinical hospital.
In contrast to mouse, human female germ cells develop asynchronously. Germ cells transition to meiosis, erase genomic imprints, and reactivate the X chromosome. It is unknown if these events all appear asynchronously, and how they relate to each other.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically during intensive care. Antibiotic-resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P.
View Article and Find Full Text PDFA case is described in which a pericardial branch of a nongrafted left internal mammary artery communicated directly with the distal left anterior descending artery, following saphenous vein bypass grafting. This type of collateralization following coronary artery bypass surgery seems to be very rare, and perhaps could protect the myocardium from severe ischemia.
View Article and Find Full Text PDF