Publications by authors named "Moussa Mahdi Ahmed"

Article Synopsis
  • The Republic of Djibouti exclusively uses groundwater, facing health risks due to high fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) levels, necessitating a comprehensive analysis of 362 groundwater samples.
  • Advanced geochemical tools and stable isotope ratios were applied to understand the mechanisms behind these enrichments, revealing that mineral dissolution significantly contributes to fluoride levels, while elevated nitrate may come from organic fertilizers.
  • Spatial distribution analysis identified contamination hotspots, with 88% of groundwater samples exceeding safe fluoride and nitrate levels, posing particular health threats to vulnerable populations like teenagers and children.
View Article and Find Full Text PDF

Within the East African Rift System (EARS), the complex Ali-Sabieh aquifers system, located in the south of the Republic of Djibouti, was overexploited and subjected to anthropogenic and/or geogenic pollution with high concentrations of dissolved nitrate (up to 181 mg/l) and sulfates (up to 1540 mg/l). This study is the first undertaken on the hydrochemistry of this aquifer system, combining geochemical tools and multi-isotope - δH(HO), δO(HO), δO(SO), δS(SO), δN(NO), δO(NO), δC(DIC), and C- was used to decipher the origin and fate of different nitrate and sulfate sources to groundwater. The groundwater samples of the region show a chemical evolution from fresh Ca(Na)-bicarbonate to brackish Na-Cl , mainly due to water-rock interaction.

View Article and Find Full Text PDF

Hg and Po were measured in the muscle tissue of commercially important fish species collected in the main coastal cities of the Djiboutian coast (Tadjoura Gulf) to evaluate the potential risk associated with their consumption. The levels of Hg among the different species ranged from 0.02 to 1.

View Article and Find Full Text PDF

Selected heavy metals and polycyclic aromatic hydrocarbons (PAHs) were determined in marine sediment from 28 sites Djibouti city. The concentrations of trace elements varied from 0 to 288.1mg/kg with relative abundance of trace metals in sediments was in the order of Zn>Cu>Ni>Cr>Co>Pb>Cd.

View Article and Find Full Text PDF

This work aims at decontaminating biologically treated domestic wastewater effluents from organic micropollutants by sulfate radical based (SO4(-)) homogeneous photo-Fenton involving peroxymonosulfate as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This oxidative system was evaluated by using several probe compounds belonging to pesticides (bifenthrin, mesotrione and clothianidin) and pharmaceuticals (diclofenac, sulfamethoxazole and carbamazepine) classes and its kinetic efficiency was compared to that to the well known UV-Vis/TiO2 heterogeneous photocatalysis. Except for carbamazepine, apparent kinetic rate constants were always 10 times higher in PMS/Fe(II)/UV-Vis than in TiO2/UV-Vis system and more than 70% of total organic carbon abatement was reached in less than one hour treatment.

View Article and Find Full Text PDF

This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H2O2. In distilled water, the order of efficiency was UV/PDS>UV/PMS>UV/H2O2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H2O2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60min for a [PMS]/[CIP] molar ratio of 20.

View Article and Find Full Text PDF

This work aimed at decontaminating biologically treated domestic wastewater effluent from pharmaceutical residues by using sulphate radical based homogeneous photo-Fenton involving persulphate (PS) as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This is the first time that the beneficiary use of solar energy in PS/Fe(II)/UV-Vis system was evaluated by using carbamazepine (CBZ) as a probe compound. In wastewater, CBZ was fully degraded in 30 min for an initial CBZ concentration of 50 μM and an optimal PS:Fe(II) molar ratio of 2:1 thanks to the high selectivity in reactivity of the sulphate radical limiting scavenging effects of organic matter and inorganic ions.

View Article and Find Full Text PDF

The purpose of this paper is to establish the feasibility of recovering discarded reverse osmosis (RO) membranes in order to reduce the salinity of domestic treated wastewater. This study shows that the reuse of RO membranes is of particular interest for arid countries having naturally high mineralized water such as Djibouti. The pilot desalination unit reduces the electrical conductivity, the turbidity and the total dissolved salt respectively at 75-85, 96.

View Article and Find Full Text PDF