Vision and magnetoreception in navigating songbirds are strongly connected as recent findings link a light dependent radical-pair mechanism in cryptochrome proteins to signalling pathways in cone photoreceptor cells. A previous yeast-two-hybrid screening approach identified six putative candidate proteins showing binding to cryptochrome type 4a. So far, only the interaction of the cone specific G-protein transducin α-subunit was investigated in more detail.
View Article and Find Full Text PDFMigratory birds are able to navigate over great distances with remarkable accuracy. The mechanism they use to achieve this feat is thought to involve two distinct steps: locating their position (the 'map') and heading towards the direction determined (the 'compass'). For decades, this map-and-compass concept has shaped our perception of navigation in animals, although the nature of the map remains debated.
View Article and Find Full Text PDFIn most avian retinas, double cones (consisting of a principal and accessory member) outnumber other photoreceptor types and have been associated with various functions, such as encoding luminance, sensing polarized light, and magnetoreception. However, their down-stream circuitry is poorly understood, particularly across bird species. Analysing species differences is important to understand changes in circuitry driven by ecological adaptations.
View Article and Find Full Text PDFMigratory birds possess remarkable accuracy in orientation and navigation, which involves various compass systems including the magnetic compass. Identifying the primary magnetosensor remains a fundamental open question. Cryptochromes (Cry) have been shown to be magnetically sensitive, and Cry4a from a migratory songbird seems to show enhanced magnetic sensitivity compared to Cry4a from resident species.
View Article and Find Full Text PDFCryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken.
View Article and Find Full Text PDFMigratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina.
View Article and Find Full Text PDFThe ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others.
View Article and Find Full Text PDFHomo-dimer formation is important for the function of many proteins. Although dimeric forms of cryptochromes (Cry) have been found by crystallography and were recently observed in vitro for European robin Cry4a, little is known about the dimerization of avian Crys and the role it could play in the mechanism of magnetic sensing in migratory birds. Here, we present a combined experimental and computational investigation of the dimerization of robin Cry4a resulting from covalent and non-covalent interactions.
View Article and Find Full Text PDFNight-migratory songbirds have a light-dependent magnetic compass sense, the mechanism of which is thought to depend on the photochemical formation of radical pairs in cryptochrome (Cry) proteins located in the retina. The finding that weak radiofrequency (RF) electromagnetic fields can prevent birds from orienting in the Earth's magnetic field has been regarded as a diagnostic test for this mechanism and as a potential source of information on the identities of the radicals. The maximum frequency that could cause such disorientation has been predicted to lie between 120 and 220 MHz for a flavin-tryptophan radical pair in Cry.
View Article and Find Full Text PDFMillions of minute, newly hatched coral reef fish larvae get carried into the open ocean by highly complex and variable currents. To survive, they must return to a suitable reef habitat within a species-specific time. Strikingly, previous studies have demonstrated that return to home reefs is much more frequent than would be expected by chance.
View Article and Find Full Text PDFThe primary step in the mechanism by which migratory birds sense the Earth's magnetic field is thought to be the light-induced formation of long-lived magnetically sensitive radical pairs within cryptochrome flavoproteins located in the birds' retinas. Blue-light absorption by the non-covalently bound flavin chromophore triggers sequential electron transfers along a chain of four tryptophan residues toward the photoexcited flavin. The recently demonstrated ability to express cryptochrome 4a from the night-migratory European robin (), Cry4a, and to replace each of the tryptophan residues by a redox-inactive phenylalanine offers the prospect of exploring the roles of the four tryptophans.
View Article and Find Full Text PDFThe biophysical mechanism of the magnetic compass sense of migratory songbirds is thought to rely on the photochemical reactions of flavin-containing radical pairs in cryptochrome proteins located in the birds' eyes. A consequence of this hypothesis is that the effect of the Earth's magnetic field on the quantum yields of reaction products should be sensitive to isotopic substitutions that modify the hyperfine interactions in the radicals. In this report, we use spin dynamics simulations to explore the effects of H → H, C → C, and N → N isotopic substitutions on the functioning of cryptochrome 4a as a magnetic direction sensor.
View Article and Find Full Text PDFVisual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far.
View Article and Find Full Text PDFThe exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The "Wulst" in the forebrain of night-migratory songbirds contains a brain area named "Cluster N", which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information.
View Article and Find Full Text PDFMigrating birds have developed remarkable navigational capabilities to successfully master biannual journeys between their breeding and wintering grounds. To reach their intended destination, they need to calculate navigational goals from a large variety of natural directional and positional cues to set a meaningful motor output command. One brain area, which has been associated with such executive functions, is the nidopallium caudolaterale (NCL), which, due to its striking similarities in terms of neurochemistry, connectivity and function, is considered analogous to the mammalian prefrontal cortex.
View Article and Find Full Text PDFMigratory birds use different global cues including celestial and magnetic information to determine and maintain their seasonally appropriate migratory direction. A hierarchy among different compass systems in songbird migrants is still a matter for discussion owing to highly variable and apparently contradictory results obtained in various experimental studies. How birds decide whether and how they should calibrate their compasses before departure remains unclear.
View Article and Find Full Text PDFA recent study by Xu et al. (, , 594, 535-540) provided strong evidence that cryptochrome 4 (Cry4) is a key protein to endow migratory birds with the magnetic compass sense. The investigation compared the magnetic field response of Cry4 from migratory and nonmigratory bird species and suggested that a difference in magnetic sensitivity could exist.
View Article and Find Full Text PDFTo navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity.
View Article and Find Full Text PDFIn night-migratory songbirds, neurobiological and behavioral evidence suggest the existence of a magnetic sense associated with the ophthalmic branch of the trigeminal nerve (V1), possibly providing magnetic positional information. Curiously, neither the unequivocal existence, structural nature, nor the exact location of any sensory structure has been revealed to date. Here, we used neuronal tract tracing to map both the innervation fields in the upper beak and the detailed trigeminal brainstem terminations of the medial and lateral V1 subbranches in the night-migratory Eurasian Blackcap ().
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
January 2022
The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds' retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein.
View Article and Find Full Text PDFJ R Soc Interface
November 2021
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former.
View Article and Find Full Text PDF