Int J Neural Syst
September 2024
Domain adaptation is a subfield of statistical learning theory that takes into account the shift between the distribution of training and test data, typically known as source and target domains, respectively. In this context, this paper presents an incremental approach to tackle the intricate challenge of unsupervised domain adaptation, where labeled data within the target domain is unavailable. The proposed approach, OTP-DA, endeavors to learn a sequence of joint subspaces from both the source and target domains using Linear Discriminant Analysis (LDA), such that the projected data into these subspaces are domain-invariant and well-separated.
View Article and Find Full Text PDF