Publications by authors named "Mourad Chioua"

A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated.

View Article and Find Full Text PDF

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX.

View Article and Find Full Text PDF

Ischemic stroke is the leading cause of disability and the second leading cause of death worldwide. However, current therapeutic strategies are scarce and of limited efficacy. The abundance of information available on the molecular pathophysiology of ischemic stroke has sparked considerable interest in developing new neuroprotective agents that can target different events of the ischemic cascade and may be used in combination with existing treatments.

View Article and Find Full Text PDF

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN , a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC = 1.

View Article and Find Full Text PDF

Cerebral ischemia is a condition affecting an increasing number of people worldwide, and the main cause of disability. Current research focuses on the search for neuroprotective drugs for its treatment, based on the molecular targets involved in the ischemic cascade. Nitrones are potent antioxidant molecules that can reduce oxidative stress.

View Article and Find Full Text PDF

The multifactorial nature of Alzheimer's disease necessitates the development of agents able to interfere with different relevant targets. A series of 22 tailored chromanones was conceptualized, synthesized, and subjected to biological evaluation. We identified one representative bearing a linker-connected azepane moiety (compound ) with balanced pharmacological properties.

View Article and Find Full Text PDF

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes.

View Article and Find Full Text PDF

Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen-glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23.

View Article and Find Full Text PDF

NLRP3 is involved in the pathophysiology of several inflammatory diseases. Therefore, there is high current interest in the clinical development of new NLRP3 inflammasome small inhibitors to treat these diseases. Novel -sulfonylureas were obtained by the replacement of the hexahydroindacene moiety of the previously described NLRP3 inhibitor MCC950.

View Article and Find Full Text PDF

Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer's disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment.

View Article and Find Full Text PDF

Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones () - as α-phenyl---butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of - has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that - have better neuroprotective and antioxidant properties than α-phenyl---butylnitrone (), and they are quite similar to -acetyl-L-cysteine (), which is a well-known antioxidant agent.

View Article and Find Full Text PDF

Herein we report metabolic stability in human liver microsomes (HLMs), interactions with cytochrome P450 isoenzymes (CYP3A4, CYP2D6, and CYP2C9), and cytotoxicity analyses on HEK-293, HepG2, Huh7, and WTIIB cell lines of our most recent multitarget directed ligands PF9601N, ASS234, and contilisant. Based on these results, we conclude that (1) PF9601N and contilisant are metabolically stable in the HLM assay, in contrast to the very unstable ASS234; (2) CYP3A4 activity was decreased by PF9601N at all the tested concentrations and by ASS234 and contilisant only at the highest concentration; CYP2D6 activity was reduced by ASS234 at 1, 10, and 25 μM and by PF9601N at 10 and 25 μM, whereas contilisant increased its activity at the same concentrations; CYP2C9 was inhibited by the three compounds; (3) contilisant did not affect cell viability in the widest range of concentrations: up to 10 μM on HEK-293 cells, up to 30 μM on Huh7 cells, up to 50 μM on HepG2 cells, and up to 30 or 100 μM on WTIIB cells. Based on these results, we selected contilisant as a metabolically stable and nontoxic lead compound for further studies in Alzheimer's disease therapy.

View Article and Find Full Text PDF

Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones () , designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone () would result in an improved and stronger neuroprotection. The neuroprotection of , measured against oligomycin A/rotenone, showed that was the best neuroprotective agent at a lower dose (EC = 51.63 ± 4.

View Article and Find Full Text PDF

We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs 1-9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs 1-9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1'Z)-1,1'-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC = 1.24 ± 0.

View Article and Find Full Text PDF

In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (-) and 13 dihydroquinolinones (-) designed as potential multitarget small molecules (MSM) for Alzheimer's disease therapy. Contrary to our expectations, none of them showed significant MAO inhibition, but compounds , , and displayed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition. In particular, molecule was found to be a potent and quite selective non-competitive inhibitor of AChE (IC = 0.

View Article and Find Full Text PDF

Nitrones have a well-recognized capacity as spin-traps and are considered powerful free radical scavengers, which are two important issues in hypoxia-induced oxidative stress and cell death in brain ischemia. Consequently, nitrones have been proposed as therapeutic agents in acute ischemic stroke (AIS). In this paper, we update the biological and pharmacological characterization of ISQ-201, a previously identified cholesteronitrone hybrid with antioxidant and neuroprotective activity.

View Article and Find Full Text PDF

The complex nature of multifactorial diseases, such as Morbus Alzheimer, has produced a strong need to design multitarget-directed ligands to address the involved complementary pathways. We performed a purposive structural modification of a tetratarget small-molecule, that is contilisant, and generated a combinatorial library of 28 substituted chromen-4-ones. The compounds comprise a basic moiety which is linker-connected to the 6-position of the heterocyclic chromenone core.

View Article and Find Full Text PDF

We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer's disease therapy. We have found that is less toxic than tacrine at high concentrations (from 100 μM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC (hAChE) = 22.0 ± 1.

View Article and Find Full Text PDF

We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 μM (86.

View Article and Find Full Text PDF

In this work six PBN-related indanonitrones 1-6 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC = 6.64 ± 0.

View Article and Find Full Text PDF

We describe herein the synthesis and neuroprotective capacity of an array of 31 compounds comprising quinolyloximes, quinolylhydrazones, quinolylimines, QNs, and related heterocyclic azolylnitrones. Neuronal cultures subjected to oxygen-glucose deprivation (OGD), as experimental model for ischemic conditions, were treated with our molecules at the onset of recovery period after OGD and showed that most of these QNs, but not the azo molecules, improved neuronal viability 24 h after recovery. Especially, QN ( Z)- N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (23) was shown as a very potent neuroprotective agent.

View Article and Find Full Text PDF

Notwithstanding the combination of cholinesterase (ChE) inhibition and calcium channel blockade within a multitarget therapeutic approach is envisaged as potentially beneficial to confront Alzheimer's disease (AD), this strategy has been scarcely investigated. To explore this promising line, a series of 5-amino-4-aryl-3,4,6,7,8,9-hexahydropyrimido [4,5-b]quinoline-2(1H)-thiones (tacripyrimidines) (4a-l) were designed by juxtaposition of tacrine, a ChE inhibitor (ChEI), and 3,4-dihydropyrimidin-2(1H)-thiones, as efficient calcium channel blockers (CCBs). In agreement with their design, all tacripyrimidines, except the unsubstituted parent compound and its p-methoxy derivative, acted as moderate to potent CCBs with activities generally similar or higher than the reference CCB drug nimodipine and were modest-to-good ChEIs.

View Article and Find Full Text PDF

The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range.

View Article and Find Full Text PDF

There is a need to develop additional effective therapies for ischemic stroke. Nitrones, which were first developed as reactive oxygen species (ROS)-trapping compounds, have been proposed as neuroprotective agents for ischemic stroke, a ROS-related disorder. The previous reported ROS-trapping compound, quinolyl nitrone RP19, is here being assayed to induce neuroprotection to ischemia-reperfusion injury in three experimental ischemia models: (i) oxygen-glucose deprivation (OGD) on primary neuronal cultures; (ii) transient global cerebral ischemia in four-vessel occlusion model; and (iii) transient focal cerebral ischemia in middle cerebral artery occlusion (tMCAO) model.

View Article and Find Full Text PDF

Aim: Due to the complex nature of Alzheimer's disease, there is a renewed search for multitarget directed drugs.

Results: This paper describes the synthesis and in vitro biological evaluation of six racemic 13-aryl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-triones (1a-6a), and six racemic 15-aryl-8,9,10,11,12,15-hexahydro-14H-benzo[6',7']chromeno[2',3:4,5] pyr-imido [1,2-a]azepine-5,14,16-triones (1b-6b), showing antioxidant and cholinesterase inhibitory capacity. Among these compounds, 13-phenyl-2,3,4,13-tetrahydro-1H,12H-benzo[6,7]chromeno[2,3-d]pyrido[1,2-a]pyrimidine-7,12,14-trione (1a) is a nonhepatotoxic at 300 μmol/l dose concentration, and a selective EeAChE inhibitor showing good antioxidant power.

View Article and Find Full Text PDF