Radioluminescent silica-based fiber dosimeters offer great advantages for designing miniaturized realtime sensors for high dose-rate dosimetry. Rise and fall kinetics of their response must be properly understood to better assess their performances in terms of measurement speed and repeatability. A standard model of radioluminescence (RL) has already been quantitatively validated for doped silica glasses, but beyond conclusive comparisons with specific experiments, a comprehensive understanding of the processes and parameters determining transient and equilibrium kinetics of RL is still lacking.
View Article and Find Full Text PDFThe luminescence properties of green Ba4Si6O16:Eu2+, rare-earths (RE) (RE = Sc, Y, La and Lu except Pm) phosphors are reported. Their long-lasting phosphorescence is discussed in view of trap depths and concentrations determined from thermally stimulated luminescence experiments. A second emission band centered at 439 nm was evidenced at low temperatures, which stems from the substitution of Eu2+ in the two non-equivalent Ba2+ sites of Ba4Si6O16.
View Article and Find Full Text PDFCerium-doped-silica glasses are widely used as ionizing radiation sensing materials. However, their response needs to be characterized as a function of measurement temperature for application in various environments, such as in vivo dosimetry, space and particle accelerators. In this paper, the temperature effect on the radioluminescence (RL) response of Cerium-doped glassy rods was investigated in the 193-353 K range under different X-ray dose rates.
View Article and Find Full Text PDFThe purpose of this work is to assess eight detectors performance for output factor (OF), percent depth dose (PDD), and beam profiles in a 6-MV Clinac stereotactic radiosurgery mode for cone irradiation using Monte Carlo simulation as reference. Cones with diameters comprised between 30 and 4 mm have been studied. The evaluated detectors were ionization chambers: pinpoint and pinpoint 3D, diodes: SRS, P and E, Edge, MicroDiamond and EBT3 radiochromic films.
View Article and Find Full Text PDFBy pumping thulium-doped silica-based fibers at 1.07 μm, rapid generation of absorbing centers leads to photoinduced attenuation (PIA). This detrimental effect prevents exploiting laser emissions in the visible and near infrared.
View Article and Find Full Text PDFThe gain of erbium-doped fiber amplifiers is damaged by irradiation partly because of creation of color centers responsible of excess absorption at pump and signal wavelengths. Based on the combination of thermally stimulated luminescence and spectrophotometry, this Letter demonstrates that a part of the gain loss should be associated with the reduction of the density of Er3+ ions by irradiation.
View Article and Find Full Text PDFThis Letter demonstrates a remarkable interplay between photo- and radiation-induced darkening of ytterbium-doped alumino-silica optical fibers operated in amplifying conditions and harsh environments (as, e.g., in space-based applications).
View Article and Find Full Text PDFThe photodarkening (PD) mechanisms of ytterbium-doped silica optical fibers have still not been elucidated, although hardening routes have been proposed. Most basic questions are still under debate about the assignment of the darkening excitation bands into the UV range, the nature of absorbing centers (photoionized centers or trapped carriers?), or of traps accepting photo-released carriers (electron or hole traps?). We used thermoluminescence measurements to characterize traps populated by different radiation types.
View Article and Find Full Text PDF