is endemic in Morocco, and it causes both visceral (VL) and cutaneous leishmaniasis (CL). In this study, the multilocus sequence typing (MLST) approach was used to investigate the phylogeny and population structure of strains isolated from CL and VL patients and the canine reservoir in different leishmaniasis endemic foci in Morocco. For this purpose, eight loci (, , , , , , and ) were amplified in 40 samples, out of which 31 were successfully sequenced.
View Article and Find Full Text PDFPrevious investigations of the eIF4A-like protein (LieIF4A) as a potential drug target delivered cholestanol derivatives inhibitors. Here, we investigated the mode of action of cholesterol derivatives as a novel scaffold structure of LieIF4A inhibitors on the RNA-dependent ATPase activity of LieIF4A and its mammalian ortholog (eIF4AI). We compared their biochemical effects on RNA-dependent ATPase activities of both proteins and investigated if rocaglamide, a known inhibitor of eIF4A, could affect LieIF4A as well.
View Article and Find Full Text PDFCutaneous leishmaniasis (CL) is one of the most neglected tropical diseases, caused by different Leishmania species. Despite its high incidence in Morocco, CL due to Leishmania tropica is poorly understood in terms of its epidemiological status and population structure. In this study, we used multilocus sequence typing (MLST) in order to explore the genetic heterogeneity of L.
View Article and Find Full Text PDFDEAD-box RNA helicases are ubiquitous proteins found in all kingdoms of life and that are associated with all processes involving RNA. Their central roles in biology make these proteins potential targets for therapeutic or prophylactic drugs. The Ded1/DDX3 subfamily of DEAD-box proteins is of particular interest because of their important role(s) in translation.
View Article and Find Full Text PDFVaccination is the most effective tool against infectious diseases. Subunit vaccines are safer compared to live-attenuated vaccines but are less immunogenic and need to be delivered with an adjuvant. Adjuvants are essential for enhancing vaccine potency by improving humoral and cell-mediated immune responses.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2020
Leishmaniases are neglected diseases, caused by intracellular protozoan parasites of the (.) genus. Although the principal host cells of the parasites are macrophages, neutrophils are the first cells rapidly recruited to the site of parasites inoculation, where they play an important role in the early recognition and elimination of the parasites.
View Article and Find Full Text PDFWe previously showed that recombinant Leishmania infantum eukaryotic initiation factor (LieIF) was able to induce the secretion of cytokines IL-12, IL-10 and TNF-α by human monocytes. In this study, we explored in vitro the potential of LieIF to induce phenotypic maturation and functional differentiation of murine bone-marrow derived dendritic cells (BM-DCs). Moreover, in order to identify potential immunnomodulatory regions of LieIF, eight recombinant overlapping protein fragments covering the whole amino acid sequence of protein, were constructed and assessed in vitro for their ability to induce maturation of BM-DCs.
View Article and Find Full Text PDFThe influenza-A virus (IAV) causes seasonal epidemics and presents a pandemic risk with the possibility of genetic re-assortment, allowing the emergence of new strains. The evolution of IAVes is done most often by relatively frequent re-assortment between gene segments, but the hypothesis of their evolution by recombination between RNA segments has not been justified to this date. Here, we examine this hypothesis by Bayesian phylogenetic analysis, to test if recombination events have occurred between genomic RNA segments.
View Article and Find Full Text PDFThe antifungal agent 6-aminocholestanol targets the production of ergosterol, which is the principle sterol in many fungi and protozoans; ergosterol serves many of the same roles as cholesterol in animals. We found that it also is an effective inhibitor of the translation-initiation factor eIF4AI from mouse (eIF4AI) and the Trypanosomatid parasite Leishmania (LieIF4A). The eIF4A proteins belong to the DEAD-box family of RNA helicases, which are ATP-dependent RNA-binding proteins and RNA-dependent ATPases.
View Article and Find Full Text PDFLeishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target.
View Article and Find Full Text PDFBackground: The 5'-methylthioadenosine phosphorylase (MTAP), an enzyme involved in purine and polyamine metabolism and in the methionine salvage pathway, is considered as a potential drug target against cancer and trypanosomiasis. In fact, Trypanosoma and Leishmania parasites lack de novo purine pathways and rely on purine salvage pathways to meet their requirements. Herein, we propose the first comprehensive bioinformatic and structural characterization of the putative Leishmania infantum MTAP (LiMTAP), using a comparative computational approach.
View Article and Find Full Text PDFIt is generally considered as imperative the ability to control leishmaniasis through the development of a protective vaccine capable of inducing long-lasting and protective cell-mediated immune responses. In this current study, we demonstrated potential epitopes that bind to H2 MHC class I and II molecules by conducting the in silico analysis of Leishmania infantum eukaryotic Initiation Factor (LieIF) protein, using online available algorithms. Moreover, we synthesized five peptides (16-18 amino acids long) which are part of the N-terminal portion of LieIF and contain promising MHC class I and II-restricted epitopes and afterwards, their predicted immunogenicity was evaluated in vitro by monitoring peptide-specific T-cell responses.
View Article and Find Full Text PDFGenetic exchange between Leishmania major strains during their development in the sand fly vector has been experimentally shown. To investigate the possibility of genetic exchange between different Leishmania species, a cutaneous strain of L. major and a visceral strain of Leishmania infantum, each bearing a different drug-resistant marker, were used to coinfect Lutzomyia longipalpis sand flies.
View Article and Find Full Text PDFThe leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF), an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L.
View Article and Find Full Text PDFInvertebrate stages of Leishmania are capable of genetic exchange during their extracellular growth and development in the sand fly vector. Here we explore two variables: the ability of diverse L. major strains from across its natural range to undergo mating in pairwise tests; and the timing of the appearance of hybrids and their developmental stage associations within both natural (Phlebotomus duboscqi) and unnatural (Lutzomyia longipalpis) sand fly vectors.
View Article and Find Full Text PDFBackground: K+ and Na+ channel toxins constitute a large set of polypeptides, which interact with their ion channel targets. These polypeptides are classified in two different structural groups. Recently a new structural group called birtoxin-like appeared to contain both types of toxins has been described.
View Article and Find Full Text PDFLeIF, a Leishmania protein similar to the eukaryotic initiation factor eIF4A, which is a prototype of the DEAD box protein family, was originally described as a Th1-type natural adjuvant and as an antigen that induces an IL12-mediated Th1 response in the peripheral blood mononuclear cells of leishmaniasis patients. This study aims to characterize this protein by comparative biochemical and genetic analysis with eIF4A in order to assess its potential as a target for drug development. We show that a His-tagged, recombinant, LeIF protein of Leishmania infantum, which was purified from Escherichia coli, is both an RNA-dependent ATPase and an ATP-dependent RNA helicase in vitro, as described previously for other members of the DEAD box helicase protein family.
View Article and Find Full Text PDF