The growing emphasis on green energy has spurred momentum in research and development within the field of photocatalytic materials, particularly for green hydrogen production. Among the most abundant oxides on Earth, oxychalcogenides stand out for their cost-effectiveness and ease of synthesis. In this context, we present an investigation of the potential use of BiAgOS as an efficient photocatalyst for hydrogen generation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2024
This study presents a theoretical examination of the electronic band structure of AA (AB) stacked bilayer blue phosphorus system within the fifth intralayer (5NN) and second interlayer nearest-neighbor (2NN) multi-orbital tight-binding (MOTB) approach. The variation of energy levels has been investigated through the symmetrical tensile strain of the low-buckled honeycomb lattice. Here, the primary objective is to examine the existence of Dirac electronic features in hexagonal stacked bilayer geometry.
View Article and Find Full Text PDFDeveloping devices for optoelectronic and photonic applications-based nanomaterials has been one of the most critical challenges in the last decade. In this work, we use first-principles density functional theory combined with non-equilibrium Green's function to highlight for the first time the sensitivity of optoelectronic and photonic properties toward the exfoliation process. All the studied structures were relaxed and their relevant phonon modes confirm the high structural stability.
View Article and Find Full Text PDFBlue phosphorene (Blu-Pn) is a new phosphorene allotrope capable of hosting a substantial amount of sodium (Na) atoms. However, it has been reported to exhibit low electrical conductivity, chemical sensitivity, and structural stability, thus limiting its utility as an anode material for Na-ion batteries (NIBs). In this work, we introduce BCN as a protective layer for Blu-Pn.
View Article and Find Full Text PDFHigher power conversion efficiencies for photovoltaic devices can be achieved through simple and low production cost processing of APbI3(A=CH3NH3,CHN2H4,…) perovskites. Due to their limited long-term stability, however, there is an urgent need to find alternative structural combinations for this family of materials. In this study, we propose to investigate the prospects of cation-substitution within the A-site of the APbI3 perovskite by selecting nine substituting organic and inorganic cations to enhance the stability of the material.
View Article and Find Full Text PDFIn recent years, search for applicable bidimensional (2D) hydrogen storage materials with high capacity and excellent H physisorption properties has attracted considerable attention from scientists and researchers. According to the rational design, and using first-principles calculations, we propose a t-graphene-like boron nitride monolayer (t-BN) for hydrogen storage application by replacing C atoms in t-graphene with B and N atoms. The thermal stability and polarization mechanisms of lithium atoms adsorbed at the center of octagons on the t-BN system were evaluated at 300 K using molecular dynamics (AIMD) calculations.
View Article and Find Full Text PDFThe use of hybrid lead halide perovskites as light absorbers in photovoltaic cells have gained large interest due to their optoelectronic properties and high efficiency. However, most hybrid perovskites contain toxic lead which has a negative impact on the environment. In this work, we systematically study the structural, electronic, and optical properties of lower lead halide perovskites FAPbSnGeX (X = I, Br, Cl), as well as discussing their photovoltaic performance (open circuit voltage ( ), the short circuit current density ( ), and the power conversion efficiency ()) using density functional theory (DFT), and we compare these with FAPbX (X = I, Br, Cl) frameworks.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2021
-dodecaborates MBH are considered among the potential candidates for solid-state electrolyte materials due to their high ionic conductivities. It has been demonstrated that the reorientation of the icosahedral anion BH plays a key role in high cation motion. However, this category of BH materials is still not well established with respect to their structural, thermodynamic and diffusion properties.
View Article and Find Full Text PDFPhosphorene is a new two-dimensional material that has recently attracted much attention owing to its fascinating electrical, optical, thermal and chemical properties. Here, we report on high-quality exfoliation of black phosphorus nanosheets, with controllable size produced in large quantities by liquid-phase exfoliation using -methyl-2-pyrrolidone (NMP) as a solvent under ambient conditions. The as-synthesized few layers show a great potential for solar energy conversion based on the optical results shown in this work.
View Article and Find Full Text PDFArsenene, a single-layer arsenic nanosheet with a honeycomb structure, has recently attracted increasing attention due to its numerous exceptional properties. In this study, density functional theory (DFT) calculations were employed to investigate and compare the interactions of Li, Na and Mg ions with the Arsenene monolayer for the purpose of using it as an anode in lithium, sodium, and magnesium ion rechargeable batteries. The results indicated that the Li, Na and Mg adatoms preferentially adsorbed on the valley sites, with negative adsorption energies of -2.
View Article and Find Full Text PDF