Publications by authors named "Mounesha Garaga"

Sodium-containing ionic liquids are very promising candidates as ion-conducting materials in alternative to electrolytes based on lithium chemistry. Here we investigate a series of seven ionic liquids with formula (EMImCl/(AlCl))/(δ-NaCl) (0≤x≤0.74).

View Article and Find Full Text PDF

Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H PO -cooled to -78 °C exhibit a significantly widened stability window.

View Article and Find Full Text PDF

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM.

View Article and Find Full Text PDF

The dynamics of the organic components of the deep eutectic solvent (DES) glyceline are analyzed using an array of complementary nuclear magnetic resonance (NMR) methods. Fast-field cycling H relaxometry, pulsed field gradient diffusion, nuclear overhauser effect spectroscopy (NOESY), C NMR relaxation, and pressure-dependent NMR experiments are deployed to sample a range of frequencies and modes of motion of the glycerol and choline components of the DES. Generally, translational and rotational diffusion of glycerol are more rapid than those of choline while short-range rotational motions observed from C relaxation indicate slow local motion of glycerol at low choline chloride (ChCl) content.

View Article and Find Full Text PDF

Although solid-state lithium (Li)-metal batteries promise both high energy density and safety, existing solid ion conductors fail to satisfy the rigorous requirements of battery operations. Inorganic ion conductors allow fast ion transport, but their rigid and brittle nature prevents good interfacial contact with electrodes. Conversely, polymer ion conductors that are Li-metal-stable usually provide better interfacial compatibility and mechanical tolerance, but typically suffer from inferior ionic conductivity owing to the coupling of the ion transport with the motion of the polymer chains.

View Article and Find Full Text PDF

We report the structure and charge transport properties of a novel solid-state proton conductor obtained by acid-base chemistry via proton transfer from 12-tungstophosphoric acid to imidazole. The resulting material (henceforth named ImidWP) is a solid salt hydrate that, at room temperature, includes four water molecules per structural unit. To our knowledge, this is the first attempt to tune the properties of a heteropolyacid-based solid-state proton conductor by means of a mixture of water and imidazole, interpolating between water-based and ionic liquid-based proton conductors of high thermal and electrochemical stability.

View Article and Find Full Text PDF

We report enhanced protonic and ionic dynamics in an imidazole/protic ionic liquid mixture confined within the nanopores of silica particles. The ionic liquid is 1-octylimidazolium bis(trifluoromethanesulfonyl)imide ([HC8Im][TFSI]), while the silica particles are microsized and characterized by internal well connected nanopores. We demonstrate that the addition of imidazole is crucial to promote a proton motion decoupled from molecular diffusion, which occurs due to the establishment of new N-HN hydrogen bonds and fast proton exchange events in the ionic domains, as evidenced by both infrared and 1H NMR spectroscopy.

View Article and Find Full Text PDF

The local environments around tellurium atoms in a series of tellurium oxide crystals were probed by Te solid-state NMR spectroscopy. Crystals with distinct TeO units (n from 3 to 6), including NaTeO, α-TeO and γ-TeO, TeO(PO), KLaTeO, BaZnTeO, and CsYTeO were studied. The latter four were synthesized through a solid-state process.

View Article and Find Full Text PDF

We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, CCImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.

View Article and Find Full Text PDF

Room temperature ionic liquids confined in a solid material, for example, nano-porous silica, are particularly propitious for energy related applications. The aim of this study is to probe the molecular interactions established between the protic ionic liquid diethylmethylammonium methanesulfonate (DEMA-OMs) and silica, where the latter consists of nano-porous micro-particles with pores in the size range of 10 nm. The changes in the local coordination and transport properties induced by the nano-confinement of the ionic liquid are investigated by a combination of Raman and solid-state NMR spectroscopy.

View Article and Find Full Text PDF

Boron heteroatom distributions are shown to be significantly different in two closely related layered borosilicates synthesized with subtly different alkylammonium surfactant species. The complicated order and disorder near framework boron sites in both borosilicates were characterized at the molecular level by using a combination of multi-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy techniques and first-principles calculations. Specifically, two-dimensional (2D) solid-state J-mediated (through-bond) (11)B{(29)Si} NMR analyses provide direct and local information on framework boron sites that are covalently bonded to silicon sites through bridging oxygen atoms.

View Article and Find Full Text PDF

This article reports on the identification, synthesis, and in-situ structure determination of a new crystalline calcium borosilicate compound of composition CaSi(1/3)B(2/3)O(8/3). Synthesis was carried out by complete crystallization on annealing from a corresponding glassy composition in the widely studied CaO-SiO2-B2O3 ternary system. The crystallographic structure was determined ab initio using electron diffraction information and the charge flipping algorithm performed on synchrotron and neutron powder diffraction data collected in situ at high temperature.

View Article and Find Full Text PDF